List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9495832/publications.pdf Version: 2024-02-01

RDETT A ROVAN

#	Article	IF	CITATIONS
1	Prioritising Sustainable Development Goals, characterising interactions, and identifying solutions for local sustainability. Environmental Science and Policy, 2022, 127, 325-336.	2.4	47
2	Complex regional telecoupling between people and nature revealed via quantification of transâ€boundary ecosystem service flows. People and Nature, 2022, 4, 274-292.	1.7	14
3	Diversifying models for analysing global change scenarios and sustainability pathways. Global Sustainability, 2022, 5, .	1.6	10
4	Continuous Loss of Global Lake Ice Across Two Centuries Revealed by Satellite Observations and Numerical Modeling. Geophysical Research Letters, 2022, 49, .	1.5	4
5	Climate change adaptation in smallholder agriculture: adoption, barriers, determinants, and policy implications. Mitigation and Adaptation Strategies for Global Change, 2022, 27, .	1.0	5
6	Early systems change necessary for catalyzing long-term sustainability in a post-2030 agenda. One Earth, 2022, 5, 792-811.	3.6	15
7	Changes in supply and demand mediate the effects of land-use change on freshwater ecosystem services flows. Science of the Total Environment, 2021, 763, 143012.	3.9	60
8	High-resolution wall-to-wall land-cover mapping and land change assessment for Australia from 1985 to 2015. Remote Sensing of Environment, 2021, 252, 112148.	4.6	58
9	National-level consumption-based and production-based utilisation of the land-system change planetary boundary: patterns and trends. Ecological Indicators, 2021, 121, 106981.	2.6	15
10	Contributions of non-timber forest products to people in mountain ecosystems and impacts of recent climate change. Ecosystems and People, 2021, 17, 447-463.	1.3	11
11	Articulating the effect of food systems innovation on the Sustainable Development Goals. Lancet Planetary Health, The, 2021, 5, e50-e62.	5.1	135
12	Pesticide Toxicity Hazard of Agriculture: Regional and Commodity Hotspots in Australia. Environmental Science & Technology, 2021, 55, 1290-1300.	4.6	17
13	Does global food trade close the dietary nutrient gap for the world's poorest nations?. Global Food Security, 2021, 28, 100490.	4.0	24
14	Conservation planning for people and nature in a Chilean biodiversity hotspot. People and Nature, 2021, 3, 686-699.	1.7	12
15	Co-creating local socioeconomic pathways for achieving the sustainable development goals. Sustainability Science, 2021, 16, 1251-1268.	2.5	34
16	Financial inclusion may limit sustainable development under economic globalization and climate change. Environmental Research Letters, 2021, 16, 054049.	2.2	16
17	Consistent, accurate, high resolution, long time-series mapping of built-up land in the North China Plain. GIScience and Remote Sensing, 2021, 58, 982-998.	2.4	6
18	Future global urban water scarcity and potential solutions. Nature Communications, 2021, 12, 4667.	5.8	463

#	Article	IF	CITATIONS
19	On the theory-practice gap in the environmental realm: perspectives from and for diverse environmental professionals. Socio-Ecological Practice Research, 2021, 3, 243-255.	0.9	20
20	Reframing water-related ecosystem services flows. Ecosystem Services, 2021, 50, 101306.	2.3	19
21	Climate change adaptation for managing non-timber forest products in the Nepalese Himalaya. Science of the Total Environment, 2021, 796, 148853.	3.9	13
22	Participatory planning for local sustainability guided by the Sustainable Development Goals. Ecology and Society, 2021, 26, .	1.0	20
23	A review of systems modelling for local sustainability. Environmental Research Letters, 2021, 16, 113004.	2.2	21
24	Survey data on climate change adaptation and barriers to adoption among smallholder farmers in Nepal. Data in Brief, 2021, 39, 107620.	0.5	4
25	Towards automatic calibration of neighbourhood influence in cellular automata land-use models. Computers, Environment and Urban Systems, 2020, 79, 101416.	3.3	37
26	Structuring and evaluating decision support processes to enhance the robustness of complex human–natural systems. Environmental Modelling and Software, 2020, 123, 104551.	1.9	53
27	Automatic calibration of a whole-of-basin water accounting model using a comprehensive learning particle swarm optimiser. Journal of Hydrology, 2020, 581, 124281.	2.3	9
28	Dataset of non-timber forest products use and impacts of recent climate change in the Upper Madi Watershed, Nepal. Data in Brief, 2020, 33, 106404.	0.5	1
29	Exploratory modeling for analyzing coupled human-natural systems under uncertainty. Global Environmental Change, 2020, 65, 102186.	3.6	65
30	Anthropogenic transformation of Yangtze Plain freshwater lakes: patterns, drivers and impacts. Remote Sensing of Environment, 2020, 248, 111998.	4.6	63
31	Achieving the Sustainable Development Goals Requires Transdisciplinary Innovation at the Local Scale. One Earth, 2020, 3, 300-313.	3.6	99
32	Innovation can accelerate the transition towards a sustainable food system. Nature Food, 2020, 1, 266-272.	6.2	285
33	Nonparametric machine learning for mapping forest cover and exploring influential factors. Landscape Ecology, 2020, 35, 1683-1699.	1.9	12
34	Stronger policy required to substantially reduce deaths from PM2.5 pollution in China. Nature Communications, 2020, 11, 1462.	5.8	196
35	Resilience of smallholder cropping to climatic variability. Science of the Total Environment, 2020, 719, 137464.	3.9	17
36	Unravelling the effects of large-scale ecological programs on ecological rehabilitation of China's Three Gorges Dam. Journal of Cleaner Production, 2020, 256, 120446.	4.6	26

#	Article	IF	CITATIONS
37	Spatiotemporal trends in adequacy of dietary nutrient production and food sources. Global Food Security, 2020, 24, 100355.	4.0	23
38	Recent responses of grassland net primary productivity to climatic and anthropogenic factors in Kyrgyzstan. Land Degradation and Development, 2020, 31, 2490-2506.	1.8	32
39	A recipe to reverse the loss of nature. Nature, 2020, 585, 503-504.	13.7	0
40	Projecting Australia's forest cover dynamics and exploring influential factors using deep learning. Environmental Modelling and Software, 2019, 119, 407-417.	1.9	45
41	A Robust Rule-Based Ensemble Framework Using Mean-Shift Segmentation for Hyperspectral Image Classification. Remote Sensing, 2019, 11, 2057.	1.8	7
42	Uncertainty Assessment of Hyperspectral Image Classification: Deep Learning vs. Random Forest. Entropy, 2019, 21, 78.	1.1	24
43	Local Agenda 2030 for sustainable development. Lancet Planetary Health, The, 2019, 3, e240-e241.	5.1	42
44	Projected social costs of CO2 emissions from forest losses far exceed the sequestration benefits of forest gains under global change. Ecosystem Services, 2019, 37, 100935.	2.3	13
45	Improving the assessment of food system sustainability. Lancet Planetary Health, The, 2019, 3, e62-e63.	5.1	15
46	Ecological civilization: perspectives from landscape ecology and landscape sustainability science. Landscape Ecology, 2019, 34, 1-8.	1.9	76
47	Rapid SDG progress possible. Nature Sustainability, 2019, 2, 999-1000.	11.5	24
48	A novel algorithm for calculating transition potential in cellular automata models of land-use/cover change. Environmental Modelling and Software, 2019, 112, 70-81.	1.9	52
49	Spatial and temporal patterns of land clearing during policy change. Land Use Policy, 2018, 75, 399-410.	2.5	40
50	Inequality in access to cultural ecosystem services from protected areas in the Chilean biodiversity hotspot. Science of the Total Environment, 2018, 636, 1128-1138.	3.9	37
51	A biodiversity-crisis hierarchy to evaluate and refine conservation indicators. Nature Ecology and Evolution, 2018, 2, 775-781.	3.4	54
52	Impacts of rapid urbanization on ecosystem services along urban-rural gradients: a case study of the Guangzhou-Foshan Metropolitan Area, South China. Ecoscience, 2018, 25, 235-247.	0.6	19
53	Forest transition in developed agricultural regions needs efficient regulatory policy. Forest Policy and Economics, 2018, 86, 67-75.	1.5	17
54	Effectiveness of regulatory policy in curbing deforestation in a biodiversity hotspot. Environmental Research Letters, 2018, 13, 124003.	2.2	24

#	Article	IF	CITATIONS
55	Expanding the Role of Targets in Conservation Policy. Trends in Ecology and Evolution, 2018, 33, 809-812.	4.2	18
56	Frequent policy uncertainty can negate the benefits of forest conservation policy. Environmental Science and Policy, 2018, 89, 401-411.	2.4	34
57	From Water-Use to Water-Scarcity Footprinting in Environmentally Extended Input–Output Analysis. Environmental Science & Technology, 2018, 52, 6761-6770.	4.6	72
58	China's response to a national land-system sustainability emergency. Nature, 2018, 559, 193-204.	13.7	839
59	Land-use change impacts on ecosystem services value: Incorporating the scarcity effects of supply and demand dynamics. Ecosystem Services, 2018, 32, 144-157.	2.3	133
60	China's progress towards sustainable land development and ecological civilization. Landscape Ecology, 2018, 33, 1647-1653.	1.9	51
61	Reducing risk in reserve selection using Modern Portfolio Theory: Coastal planning under seaâ€ l evel rise. Journal of Applied Ecology, 2018, 55, 2193-2203.	1.9	28
62	Changes in land-use and ecosystem services in the Guangzhou-Foshan Metropolitan Area, China from 1990 to 2010: Implications for sustainability under rapid urbanization. Ecological Indicators, 2018, 93, 930-941.	2.6	109
63	Mixed policies give more options in multifunctional tropical forest landscapes. Journal of Applied Ecology, 2017, 54, 51-60.	1.9	57
64	Agricultural land-use dynamics: Assessing the relative importance of socioeconomic and biophysical drivers for more targeted policy. Land Use Policy, 2017, 63, 53-66.	2.5	31
65	Climate change and the economics of biomass energy feedstocks in semi-arid agricultural landscapes: A spatially explicit real options analysis. Journal of Environmental Management, 2017, 192, 171-183.	3.8	22
66	Finding pathways to national-scale land-sector sustainability. Nature, 2017, 544, 217-222.	13.7	352
67	Managing too little and too much water: Robust mine-water management strategies under variable climate and mine conditions. Journal of Cleaner Production, 2017, 162, 1009-1020.	4.6	31
68	Scenarios for land use and ecosystem services under global change. Ecosystem Services, 2017, 25, 56-68.	2.3	66
69	Projecting the performance of conservation interventions. Biological Conservation, 2017, 215, 142-151.	1.9	31
70	Incorporating climate change into ecosystem service assessments and decisions: a review. Global Change Biology, 2017, 23, 28-41.	4.2	174
71	Sensitivity in Ecological Modeling. , 2017, , 381-396.		1
72	Cap and trade policy for managing water competition from potential future carbon plantations. Environmental Science and Policy, 2016, 66, 11-22.	2.4	11

#	Article	IF	CITATIONS
73	Models of reforestation productivity and carbon sequestration for land use and climate change adaptation planning in South Australia. Journal of Environmental Management, 2016, 181, 279-288.	3.8	24
74	Australia is 'free to choose' economic growth and falling environmental pressures. Nature, 2016, 534, S1-S2.	13.7	4
75	Regional engagement and spatial modelling for natural resource management planning. Sustainability Science, 2016, 11, 733-747.	2.5	10
76	Land-use and sustainability under intersecting global change and domestic policy scenarios: Trajectories for Australia to 2050. Global Environmental Change, 2016, 38, 130-152.	3.6	85
77	Designer policy for carbon and biodiversity co-benefits under global change. Nature Climate Change, 2016, 6, 301-305.	8.1	46
78	Mapping agriculture's impact by combining farm management handbooks, life-cycle assessment and search engine science. Environmental Modelling and Software, 2016, 80, 54-65.	1.9	10
79	Robust global sensitivity analysis under deep uncertainty via scenario analysis. Environmental Modelling and Software, 2016, 76, 154-166.	1.9	68
80	Scenarios for Australian agricultural production and land use to 2050. Agricultural Systems, 2016, 142, 70-83.	3.2	47
81	Incorporating deep uncertainty into the elementary effects method for robust global sensitivity analysis. Ecological Modelling, 2016, 321, 1-9.	1.2	35
82	Land use efficiency: anticipating future demand for landâ€sector greenhouse gas emissions abatement and managing tradeâ€offs with agriculture, water, and biodiversity. Global Change Biology, 2015, 21, 4098-4114.	4.2	64
83	What Actually Confers Adaptive Capacity? Insights from Agro-Climatic Vulnerability of Australian Wheat. PLoS ONE, 2015, 10, e0117600.	1.1	28
84	The costs of reforestation: A spatial model of the costs of establishing environmental and carbon plantings. Land Use Policy, 2015, 44, 110-121.	2.5	35
85	Making decisions for managing ecosystem services. Biological Conservation, 2015, 184, 229-238.	1.9	192
86	Ecosystem services from a degraded peatland of Central Kalimantan: implications for policy, planning, and management. , 2015, 25, 70-87.		42
87	Measurement matters in managing landscape carbon. Ecosystem Services, 2015, 13, 6-15.	2.3	14
88	Land use mapping error introduces strongly-localised, scale-dependent uncertainty into land use and ecosystem services modelling. Ecosystem Services, 2015, 15, 63-74.	2.3	44
89	Real options analysis for land use management: Methods, application, and implications for policy. Journal of Environmental Management, 2015, 161, 144-152.	3.8	60
90	Identifying the spatial and temporal variability of economic opportunity costs to promote the adoption of alternative land uses in grain growing agricultural areas: An Australian example. Journal of Environmental Management, 2015, 155, 123-135.	3.8	16

#	Article	IF	CITATIONS
91	Better land-use allocation outperforms land sparing and land sharing approaches to conservation in Central Kalimantan, Indonesia. Biological Conservation, 2015, 186, 276-286.	1.9	54
92	Modelling Australian land use competition and ecosystem services with food price feedbacks at high spatial resolution. Environmental Modelling and Software, 2015, 69, 141-154.	1.9	58
93	Australia is â€~free to choose' economic growth and falling environmental pressures. Nature, 2015, 527, 49-53.	13.7	130
94	Sustainable limits to crop residue harvest for bioenergy: maintaining soil carbon in Australia's agricultural lands. GCB Bioenergy, 2015, 7, 479-487.	2.5	32
95	Simple models for managing complex social–ecological systems: The Landscape Futures Analysis Tool (LFAT). Environmental Modelling and Software, 2015, 63, 217-229.	1.9	16
96	Influence of management and environment on Australian wheat: information for sustainable intensification and closing yield gaps. Environmental Research Letters, 2014, 9, 044005.	2.2	33
97	Post-processing methods to eliminate erroneous grain yield measurements: review and directions for future development. Precision Agriculture, 2014, 15, 377-402.	3.1	51
98	Sensitivity and uncertainty analysis of the APSIM-wheat model: Interactions between cultivar, environmental, and management parameters. Ecological Modelling, 2014, 279, 1-11.	1.2	112
99	Supply of carbon sequestration and biodiversity services from Australia's agricultural land under global change. Global Environmental Change, 2014, 28, 166-181.	3.6	97
100	Time-dependent sensitivity of a process-based ecological model. Ecological Modelling, 2013, 265, 114-123.	1.2	31
101	Large-scale, high-resolution agricultural systems modeling using a hybrid approach combining grid computing and parallel processing. Environmental Modelling and Software, 2013, 41, 231-238.	1.9	57
102	Land science contributions to ecosystem services. Current Opinion in Environmental Sustainability, 2013, 5, 509-514.	3.1	50
103	Incentives, land use, and ecosystem services: Synthesizing complex linkages. Environmental Science and Policy, 2013, 27, 124-134.	2.4	123
104	Ecohydrological and socioeconomic integration for the operational management of environmental flows. , 2013, 23, 999-1016.		22
105	The second industrial transformation of Australian landscapes. Current Opinion in Environmental Sustainability, 2013, 5, 278-287.	3.1	23
106	Impact of multiple interacting financial incentives on land use change and the supply of ecosystem services. Ecosystem Services, 2013, 4, 60-72.	2.3	60
107	High-performance computing tools for the integrated assessment and modelling of social–ecological systems. Environmental Modelling and Software, 2013, 39, 295-303.	1.9	48
108	Metaâ€modeling soil organic carbon sequestration potential and its application at regional scale. Ecological Applications, 2013, 23, 408-420.	1.8	45

#	Article	IF	CITATIONS
109	Impact of agricultural management practices on soil organic carbon: simulation of <scp>A</scp> ustralian wheat systems. Global Change Biology, 2013, 19, 1585-1597.	4.2	73
110	Parallelization and optimization of spatial analysis for large scale environmental model data assembly. Computers and Electronics in Agriculture, 2012, 89, 94-99.	3.7	19
111	Variance-based sensitivity analysis of a forest growth model. Ecological Modelling, 2012, 247, 135-143.	1.2	64
112	Food-Carbon Trade-offs between Agriculture and Reforestation Land Uses under Alternate Market-based Policies. Ecology and Society, 2012, 17, .	1.0	37
113	Identifying priority areas for reducing species vulnerability to climate change. Diversity and Distributions, 2012, 18, 60-72.	1.9	67
114	Mitigating economic risk from climate variability in rain-fed agriculture through enterprise mix diversification. Ecological Economics, 2012, 79, 105-112.	2.9	46
115	Species vulnerability to climate change: impacts on spatial conservation priorities and species representation. Global Change Biology, 2012, 18, 2335-2348.	4.2	111
116	Integrated modelling of costâ€effective siting and operation of flowâ€control infrastructure for river ecosystem conservation. Water Resources Research, 2011, 47, .	1.7	19
117	An invasive plant and climate change threat index for weed risk management: Integrating habitat distribution pattern and dispersal process. Ecological Indicators, 2011, 11, 183-198.	2.6	64
118	Modelling and mapping agricultural opportunity costs to guide landscape planning for natural resource management. Ecological Indicators, 2011, 11, 199-208.	2.6	56
119	Identifying strengths and weaknesses of landscape visualisation for effective communication of future alternatives. Landscape and Urban Planning, 2011, 100, 231-241.	3.4	87
120	Comparing Spatially Explicit Ecological and Social Values for Natural Areas to Identify Effective Conservation Biology, 2011, 25, 172-181.	2.4	120
121	Carbon Payments and Low-Cost Conservation. Conservation Biology, 2011, 25, 835-845.	2.4	92
122	Designing a Policy Mix and Sequence for Mitigating Agricultural Non-Point Source Pollution in a Water Supply Catchment. Water Resources Management, 2011, 25, 875-892.	1.9	55
123	Landscape futures analysis: Assessing the impacts of environmental targets under alternative spatial policy options and future scenarios. Environmental Modelling and Software, 2011, 26, 83-91.	1.9	95
124	Contribution of site assessment toward prioritising investment in natural capital. Environmental Modelling and Software, 2011, 26, 30-37.	1.9	33
125	Quantifying and Exploring Strategic Regional Priorities for Managing Natural Capital and Ecosystem Services Given Multiple Stakeholder Perspectives. Ecosystems, 2010, 13, 539-555.	1.6	55
126	Reconfiguring an irrigation landscape to improve provision of ecosystem services. Ecological Economics, 2010, 69, 1031-1042.	2.9	55

#	Article	IF	CITATIONS
127	A conservation industry for sustaining natural capital and ecosystem services in agricultural landscapes. Ecological Economics, 2010, 69, 680-689.	2.9	32
128	Targeting the management of ecosystem services based on social values: Where, what, and how?. Landscape and Urban Planning, 2010, 97, 111-122.	3.4	217
129	Potential of woody biomass production for motivating widespread natural resource management under climate change. Land Use Policy, 2010, 27, 713-725.	2.5	41
130	Development and application of a model for robust, cost-effective investment in natural capital and ecosystem services. Biological Conservation, 2010, 143, 1737-1750.	1.9	31
131	Biofuels agriculture: landscapeâ€scale tradeâ€offs between fuel, economics, carbon, energy, food, and fiber. GCB Bioenergy, 2010, 2, 330-345.	2.5	60
132	Identifying cost-effective hotspots for restoring natural capital and enhancing landscape multifunctionality. Ecological Economics, 2009, 68, 654-668.	2.9	145
133	Mapping community values for natural capital and ecosystem services. Ecological Economics, 2009, 68, 1301-1315.	2.9	484
134	Mapping Economic Returns to Agriculture for Informing Environmental Policy in the Murray–Darling Basin, Australia. Environmental Modeling and Assessment, 2009, 14, 375-390.	1.2	28
135	Adaptive management for mitigating Cryptosporidium risk in source water: A case study in an agricultural catchment in South Australia. Journal of Environmental Management, 2009, 90, 3122-3134.	3.8	30
136	Modelling farming systems performance at catchment and regional scales to support natural resource management. Njas - Wageningen Journal of Life Sciences, 2009, 57, 101-108.	7.9	23
137	Costâ€effective alternatives for mitigating <i>Cryptosporidium</i> risk in drinking water and enhancing ecosystem services. Water Resources Research, 2009, 45, .	1.7	27
138	Agricultural commodity mapping for land use change assessment and environmental management: an application in the Murray–Darling Basin, Australia. Journal of Land Use Science, 2009, 4, 131-155.	1.0	24
139	Systematic regional planning for multiple objective natural resource management. Journal of Environmental Management, 2008, 88, 1175-1189.	3.8	75
140	Exploring the cost effectiveness of land conservation auctions and payment policies*. Australian Journal of Agricultural and Resource Economics, 2008, 52, 303-319.	1.3	74
141	An assessment of the economic and environmental potential of biomass production in an agricultural region. Land Use Policy, 2008, 25, 533-549.	2.5	54
142	Analysing Landscape Futures for Dryland Agricultural Areas: a Case Study in the Lower Murray Region of Southern Australia. , 2008, , 407-434.		1
143	CREDOS: A Conservation Reserve Evaluation And Design Optimisation System. Environmental Modelling and Software, 2007, 22, 449-463.	1.9	29
144	Systematic landscape restoration in the rural–urban fringe: meeting conservation planning and policy goals. Biodiversity and Conservation, 2007, 16, 3781-3802.	1.2	66

#	Article	IF	CITATIONS
145	Risk analysis of possible impacts of climate change on South Australian wheat production. Climatic Change, 2007, 85, 89-101.	1.7	32
146	Systematic landscape restoration using integer programming. Biological Conservation, 2006, 128, 369-383.	1.9	79
147	Synergistic Techniques for Better Understanding and Classifying the Environmental Structure of Landscapes. Environmental Management, 2006, 37, 126-140.	1.2	27
148	Spatial Analysis of Environmental Change Impacts on Wheat Production in Mid-Lower North, South Australia. Climatic Change, 2005, 72, 213-228.	1.7	24
149	Development, Land-use Change and Rural Resettlement Capacity: a case study of the Three Gorges Project, China. Australian Geographer, 2005, 36, 201-220.	1.0	19
150	Potential impact of climate change on wheat yield in South Australia. Agricultural and Forest Meteorology, 2005, 132, 273-285.	1.9	119
151	Probabilistic distributions of regional climate change and their application in risk analysis of wheat production. Climate Research, 2005, 29, 41-52.	0.4	38
152	Physical environmental modeling, visualization and query for supporting landscape planning decisions. Landscape and Urban Planning, 2003, 65, 237-259.	3.4	46
153	Quantitative and visual assessments of climate change impacts on South Australian wheat production. Agricultural Systems, 2003, 77, 173-186.	3.2	63
154	Reserve Selection for Nature Conservation in South Australia: Past, Present and Future. Geographical Research, 2002, 40, 196-209.	0.6	8
155	Threeâ€Dimensional Neurointerpolation of Annual Mean Precipitation and Temperature Surfaces for China. Geographical Analysis, 2002, 34, 93-111.	1.9	27
156	Distributed process modeling for regional assessment of coastal vulnerability to sea-level rise. Environmental Modeling and Assessment, 2001, 6, 57-65.	1.2	61
157	Quantitative and Qualitative Assessment of the Accuracy of Neurointerpolated Annual Mean Precipitation and Temperature Surfaces for China. Journal of Spatial Science, 2001, 30, 1-14.	0.2	5
158	A Generic Method for Identifying Regional Koala Habitat using GIS. Geographical Research, 1997, 35, 125-139.	0.6	4