Christopher Fernandez-Prada

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9495793/publications.pdf

Version: 2024-02-01

41 papers

1,045 citations

471061 17 h-index 31 g-index

42 all docs 42 docs citations

times ranked

42

1409 citing authors

#	Article	IF	Citations
1	A review of the current evidence of fruit phenolic compounds as potential antimicrobials against pathogenic bacteria. Microbial Pathogenesis, 2019, 130, 259-270.	1.3	153
2	Cos-Seq for high-throughput identification of drug target and resistance mechanisms in the protozoan parasite <i>Leishmania</i> . Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E3012-21.	3.3	76
3	Drug resistance analysis by next generation sequencing in Leishmania. International Journal for Parasitology: Drugs and Drug Resistance, 2015, 5, 26-35.	1.4	66
4	Role of trypanosomatid's arginase in polyamine biosynthesis and pathogenesis. Molecular and Biochemical Parasitology, 2012, 181, 85-93.	0.5	49
5	Different Mutations in a P-type ATPase Transporter in Leishmania Parasites are Associated with Cross-resistance to Two Leading Drugs by Distinct Mechanisms. PLoS Neglected Tropical Diseases, 2016, 10, e0005171.	1.3	48
6	Indotecan (LMP400) and AM13-55: Two Novel Indenoisoquinolines Show Potential for Treating Visceral Leishmaniasis. Antimicrobial Agents and Chemotherapy, 2012, 56, 5264-5270.	1.4	47
7	Extracellular Vesicles in Trypanosomatids: Host Cell Communication. Frontiers in Cellular and Infection Microbiology, 2020, 10, 602502.	1.8	47
8	DNA topoisomerases in apicomplexan parasites: promising targets for drug discovery. Proceedings of the Royal Society B: Biological Sciences, 2010, 277, 1777-1787.	1.2	45
9	Appraisal of a Leishmania major Strain Stably Expressing mCherry Fluorescent Protein for Both In Vitro and In Vivo Studies of Potential Drugs and Vaccine against Cutaneous Leishmaniasis. PLoS Neglected Tropical Diseases, 2012, 6, e1927.	1.3	43
10	Gimatecan and other camptothecin derivatives poison Leishmania DNA-topoisomerase IB leading to a strong leishmanicidal effect. Biochemical Pharmacology, 2013, 85, 1433-1440.	2.0	43
11	Trypanosomatids topoisomerase re-visited. New structural findings and role in drug discovery. International Journal for Parasitology: Drugs and Drug Resistance, 2014, 4, 326-337.	1.4	39
12	High-throughput Cos-Seq screen with intracellular Leishmania infantum for the discovery of novel drug-resistance mechanisms. International Journal for Parasitology: Drugs and Drug Resistance, 2018, 8, 165-173.	1.4	37
13	Unravelling the proteomic signature of extracellular vesicles released by drug-resistant Leishmania infantumÁparasites. PLoS Neglected Tropical Diseases, 2020, 14, e0008439.	1.3	35
14	Of Drugs and Trypanosomatids: New Tools and Knowledge to Reduce Bottlenecks in Drug Discovery. Genes, 2020, 11, 722.	1.0	30
15	Identification of asymptomatic Leishmania infections: a scoping review. Parasites and Vectors, 2022, 15, 5.	1.0	27
16	Total Synthesis and Antileishmanial Activity of the Natural Occurring Acetylenic Fatty Acids 6â€Heptadecynoic Acid and 6â€Icosynoic Acid. Lipids, 2009, 44, 953-61.	0.7	22
17	2-Alkynoic fatty acids inhibit topoisomerase IB from Leishmania donovani. Bioorganic and Medicinal Chemistry Letters, 2012, 22, 6185-6189.	1.0	21
18	MRPA-independent mechanisms of antimony resistance in Leishmania infantum. International Journal for Parasitology: Drugs and Drug Resistance, 2020, 13, 28-37.	1.4	19

2

#	Article	IF	Citations
19	<i>Leishmania</i> and its exosomal pathway: a novel direction for vaccine development. Future Microbiology, 2019, 14, 559-561.	1.0	18
20	Extracellular vesicles and leishmaniasis: Current knowledge and promising avenues for future development. Molecular Immunology, 2021, 135, 73-83.	1.0	17
21	First total synthesis and antiprotozoal activity of (Z)-17-methyl-13-octadecenoic acid, a new marine fatty acid from the sponge Polymastia penicillus. Chemistry and Physics of Lipids, 2009, 161, 38-43.	1.5	15
22	A pentapeptide signature motif plays a pivotal role in Leishmania DNA topoisomerase IB activity and camptothecin sensitivity. Biochimica Et Biophysica Acta - General Subjects, 2012, 1820, 2062-2071.	1.1	14
23	Trypanosomatids see the light: recent advances in bioimaging research. Drug Discovery Today, 2015, 20, 114-121.	3.2	14
24	Effects of recycled manure solids bedding on the spread of gastrointestinal parasites in the environment of dairies and milk. Journal of Dairy Science, 2019, 102, 11308-11316.	1.4	14
25	First total synthesis of the $(\hat{A}\pm)$ -2-methoxy-6-heptadecynoic acid and related 2-methoxylated analogs as effective inhibitors of the Leishmania topoisomerase IB enzyme. Pure and Applied Chemistry, 2012, 84, 1867-1875.	0.9	13
26	Synthesis of Marine \hat{l}_{\pm} -Methoxylated Fatty Acid Analogs that Effectively Inhibit the Topoisomerase IB from Leishmania donovani with a Mechanism Different from that of Camptothecin. Marine Drugs, 2013, 11, 3661-3675.	2.2	13
27	First total synthesis and antileishmanial activity of (Z)-16-methyl-11-heptadecenoic acid, a new marine fatty acid from the sponge Dragmaxia undata. Chemistry and Physics of Lipids, 2011, 164, 113-117.	1.5	12
28	Innovative Solutions for the Control of Leishmaniases: Nanoscale Drug Delivery Systems. Current Pharmaceutical Design, 2019, 25, 1582-1592.	0.9	11
29	Identification and Characterization of the Regions Involved in the Nuclear Translocation of the Heterodimeric Leishmanial DNA Topoisomerase IB. PLoS ONE, 2013, 8, e73565.	1.1	10
30	Repurposed Molecules: A New Hope in Tackling Neglected Infectious Diseases. , 2019, , 119-160.		9
31	Three different mutations in the DNA topoisomerase 1B in Leishmania infantum contribute to resistance to antitumor drug topotecan. Parasites and Vectors, 2021, 14, 438.	1.0	8
32	Novel Findings on Trypanosomatid Chemotherapy Using DNA Topoisomerase Inhibitors. Mini-Reviews in Medicinal Chemistry, 2009, 9, 674-686.	1.1	6
33	Cos-Seq: A High-Throughput Gain-of-Function Screen for Drug Resistance Studies in Leishmania. Methods in Molecular Biology, 2019, 1971, 141-167.	0.4	6
34	Influence of N-Methylation and Conformation on Almiramide Anti-Leishmanial Activity. Molecules, 2021, 26, 3606.	1.7	4
35	Exposure to Tick-Borne Pathogens in Cats and Dogs Infested With Ixodes scapularis in Quebec: An 8-Year Surveillance Study. Frontiers in Veterinary Science, 2021, 8, 696815.	0.9	4
36	Leishmania Viannia guyanensis. Trends in Parasitology, 2019, 35, 1018-1019.	1.5	3

CHRISTOPHER

#	Article	IF	CITATIONS
37	High-throughput identification and quantification of Haemonchus contortus in fecal samples. Veterinary Parasitology, 2019, 265, 24-28.	0.7	3
38	infection in a dog imported from Morocco. Canadian Veterinary Journal, 2020, 61, 963-965.	0.0	2
39	Sex under pressure: stress facilitates Leishmania in vitro hybridization. Trends in Parasitology, 2022, 38, 274-276.	1.5	2
40	Omics and Their Impact on the Development of Chemotherapy Against <i>Leishmania</i> RSC Drug Discovery Series, 2017, , 101-129.	0.2	0
41	Recent research brings hope for reshaping the coâ€evolutionary arms race against parasitic infectious diseases. Drug Development Research, 2022, 83, 219-221.	1.4	0