Alberto Gandarillas

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9495770/publications.pdf

Version: 2024-02-01

29

all docs

567281 526287 28 916 15 citations h-index papers

29

29 1279 docs citations times ranked citing authors

27

g-index

#	Article	IF	Citations
1	Endogenous Myc controls mammalian epidermal cell size, hyperproliferation, endoreplication and stem cell amplification. Journal of Cell Science, 2005, 118, 1693-1704.	2.0	107
2	Epidermal differentiation, apoptosis, and senescence: common pathways?. Experimental Gerontology, 2000, 35, 53-62.	2.8	103
3	A Mitosis Block Links Active Cell Cycle with Human Epidermal Differentiation and Results in Endoreplication. PLoS ONE, 2010, 5, e15701.	2.5	84
4	Normal and c-Myc-promoted human keratinocyte differentiation both occur via a novel cell cycle involving cellular growth and endoreplication. Oncogene, 2000, 19, 3278-3289.	5.9	69
5	Mammalian endoreplication emerges to reveal a potential developmental timer. Cell Death and Differentiation, 2018, 25, 471-476.	11.2	56
6	Switch from p53 to MDM2 as differentiating human keratinocytes lose their proliferative potential and increase in cellular size. Oncogene, 2000, 19, 3693-3705.	5.9	55
7	The mysterious human epidermal cell cycle, or an oncogene-induced differentiation checkpoint. Cell Cycle, 2012, 11, 4507-4516.	2.6	49
8	Inactivation of p53 in Human Keratinocytes Leads to Squamous Differentiation and Shedding via Replication Stress and Mitotic Slippage. Cell Reports, 2014, 9, 1349-1360.	6.4	48
9	Changes in Keratin Expression during Malignant Progression of Transformed Mouse Epidermal Keratinocytes. Experimental Cell Research, 1993, 204, 11-21.	2.6	42
10	Factors Secreted by Cancer-Associated Fibroblasts that Sustain Cancer Stem Properties in Head and Neck Squamous Carcinoma Cells as Potential Therapeutic Targets. Cancers, 2018, 10, 334.	3.7	41
11	A Cell Cycle Role for the Epigenetic Factor CTCF-L/BORIS. PLoS ONE, 2012, 7, e39371.	2.5	37
12	Cycling up the epidermis: reconciling 100Âyears of debate. Experimental Dermatology, 2014, 23, 87-91.	2.9	32
13	Characterisation of cell cycle arrest and terminal differentiation in a maximally proliferative human epithelial tissue: Lessons from the human hair follicle matrix. European Journal of Cell Biology, 2017, 96, 632-641.	3 . 6	31
14	Sublethal UV irradiation induces squamous differentiation via a p53-independent, DNA damage-mitosis checkpoint. Cell Death and Disease, 2018, 9, 1094.	6.3	28
15	Cellular and animal models of skin alterations in the autism-related ADNP syndrome. Scientific Reports, 2019, 9, 736.	3.3	27
16	Squamous differentiation requires G2/mitosis slippage to avoid apoptosis. Cell Death and Differentiation, 2020, 27, 2451-2467.	11.2	19
17	MYC accelerates p21 ^{CIP} â€induced megakaryocytic differentiation involving early mitosis arrest in leukemia cells. Journal of Cellular Physiology, 2012, 227, 2069-2078.	4.1	15
18	Keratinocyte Differentiation by Flow Cytometry. Methods in Molecular Biology, 2019, 2109, 83-92.	0.9	14

#	Article	IF	CITATIONS
19	Inefficient differentiation response to cell cycle stress leads to genomic instability and malignant progression of squamous carcinoma cells. Cell Death and Disease, 2017, 8, e2901-e2901.	6.3	12
20	The DNA damage response links human squamous proliferation with differentiation. Journal of Cell Biology, 2020, $219, \ldots$	5.2	12
21	Response of head and neck epithelial cells to a DNA damageâ€differentiation checkpoint involving polyploidization. Head and Neck, 2018, 40, 2487-2497.	2.0	10
22	Polyploidy and the mitosis path to epidermal cell fate. Cell Cycle, 2019, 18, 359-362.	2.6	6
23	The mitosis-differentiation checkpoint, another guardian of the epidermal genome. Molecular and Cellular Oncology, 2015, 2, e997127.	0.7	4
24	p21CIP1 controls the squamous differentiation response to replication stress. Oncogene, 2021, 40, 152-162.	5.9	4
25	Protooncogene MYC drives human melanocyte melanogenesis and senescence. Cancer Gene Therapy, 2022, 29, 1160-1167.	4.6	4
26	Genetic Modification of Human Primary Keratinocytes by Lentiviral Vectors. Methods in Molecular Biology, 2019, 2109, 113-123.	0.9	3
27	Allergenicity to worldwide invasive grass Cortaderia selloana as environmental risk to public health. Scientific Reports, 2021, 11, 24426.	3.3	3
28	Cryptomphalus aspersa Eggs Extract Potentiates Human Epidermal Stem Cell Regeneration and Amplification. Cosmetics, 2022, 9, 2.	3.3	1