
Tanja Schmitz-Hübsch

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9495361/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Connectivity Predicts deep brain stimulation outcome in <scp>P</scp> arkinson disease. Annals of Neurology, 2017, 82, 67-78.	5.3	514
2	Accuracy and Reliability of the Kinect Version 2 for Clinical Measurement of Motor Function. PLoS ONE, 2016, 11, e0166532.	2.5	183
3	Survival in patients with spinocerebellar ataxia types 1, 2, 3, and 6 (EUROSCA): a longitudinal cohort study. Lancet Neurology, The, 2018, 17, 327-334.	10.2	69
4	Accuracy and repeatability of two methods of gait analysis – GaitRite™ und Mobility Lab™ – in subjects with cerebellar ataxia. Gait and Posture, 2016, 48, 194-201.	1.4	59
5	Less Is More – Estimation of the Number of Strides Required to Assess Gait Variability in Spatially Confined Settings. Frontiers in Aging Neuroscience, 2018, 10, 435.	3.4	41
6	Validity of visual perceptive computing for static posturography in patients with multiple sclerosis. Multiple Sclerosis Journal, 2016, 22, 1596-1606.	3.0	39
7	Maximum walking speed in multiple sclerosis assessed with visual perceptive computing. PLoS ONE, 2017, 12, e0189281.	2.5	29
8	Subjective and objective assessment of physical activity in multiple sclerosis and their relation to health-related quality of life. BMC Neurology, 2017, 17, 10.	1.8	18
9	Association Between Fatigue and Motor Exertion in Patients With Multiple Sclerosis—a Prospective Study. Frontiers in Neurology, 2020, 11, 208.	2.4	18
10	Cerebellar neurochemical alterations in spinocerebellar ataxia type 14 appear to include glutathione deficiency. Journal of Neurology, 2015, 262, 1927-1935.	3.6	13
11	Spinocerebellar ataxia type 14: refining clinicogenetic diagnosis in a rare adultâ€onset disorder. Annals of Clinical and Translational Neurology, 2021, 8, 774-789.	3.7	13
12	Instrumental Assessment of Stepping in Place Captures Clinically Relevant Motor Symptoms of Parkinson's Disease. Sensors, 2020, 20, 5465.	3.8	8
13	Neural Processes of Psychological Stress and Relaxation Predict the Future Evolution of Quality of Life in Multiple Sclerosis. Frontiers in Neurology, 2021, 12, 753107.	2.4	7
14	Cultural bias in motor function patterns: Potential relevance for predictive, preventive, and personalized medicine. EPMA Journal, 2021, 12, 91-101.	6.1	4
15	Investigation of Visual System Involvement in Spinocerebellar Ataxia Type 14. Cerebellum, 2020, 19, 469-482.	2.5	3
16	Proposal for Post Hoc Quality Control in Instrumented Motion Analysis Using Markerless Motion Capture: Development and Usability Study. JMIR Human Factors, 2022, 9, e26825.	2.0	2