
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9495142/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Evaluation of automated radiostereometric image registration in total knee arthroplasty utilizing a syntheticâ€based and a CTâ€based volumetric model. Journal of Orthopaedic Research, 2023, 41, 436-446.	2.3	4
2	Hypobaric hypoxia deteriorates bone mass and strength in mice. Bone, 2022, 154, 116203.	2.9	9
3	Opportunities for biomineralization research using multiscale computed X-ray tomography as exemplified by bone imaging. Journal of Structural Biology, 2022, 214, 107822.	2.8	13
4	The effect of casein glycomacropeptide versus free synthetic amino acids for early treatment of phenylketonuria in a mice model. PLoS ONE, 2022, 17, e0261150.	2.5	3
5	Effect of Acetazolamide and Zoledronate on Simulated High Altitude-Induced Bone Loss. Frontiers in Endocrinology, 2022, 13, 831369.	3.5	5
6	Anti-sclerostin antibodies and abaloparatide have additive effects when used as a countermeasure against disuse osteopenia in female rats. Bone, 2022, 160, 116417.	2.9	9
7	Drill-Hole Bone Defects in Animal Models of Bone Healing: Protocol for a Systematic Review. JMIR Research Protocols, 2022, 11, e34887.	1.0	0
8	Assessment of knee kinematics with dynamic radiostereometry: Validation of an automated modelâ€based method of analysis using bone models. Journal of Orthopaedic Research, 2021, 39, 597-608.	2.3	8
9	Effect of a formalin-based fixation method on bone mineral content in human <i>ex-vivo</i> specimens. Acta Odontologica Scandinavica, 2021, 79, 212-217.	1.6	2
10	Activin type IIA decoy receptor and intermittent parathyroid hormone in combination overturns the bone loss in disuse-osteopenic mice. Bone, 2021, 142, 115692.	2.9	7
11	A Systematic Review of Animal Models of Disuse-Induced Bone Loss. Calcified Tissue International, 2021, 108, 561-575.	3.1	26
12	Artificial intelligence-assisted identification and quantification of osteoclasts. MethodsX, 2021, 8, 101272.	1.6	8
13	Superoxide dismutase 3 is expressed in bone tissue and required for normal bone homeostasis and mineralization. Free Radical Biology and Medicine, 2021, 164, 399-409.	2.9	8
14	The Effect of Normobaric Intermittent Hypoxia Therapy on Bone in Normal and Disuse Osteopenic Mice. High Altitude Medicine and Biology, 2021, 22, 225-234.	0.9	4
15	Teriparatide and Abaloparatide Have a Similar Effect on Bone in Mice. Frontiers in Endocrinology, 2021, 12, 628994.	3.5	14
16	Short-term glucocorticoid excess blunts abaloparatide-induced increase in femoral bone mass and strength in mice. Scientific Reports, 2021, 11, 12258.	3.3	11
17	Sparse dose-dependent difference in skeletal effects of short-term glucocorticoid excess in outbred Swiss mice. Endocrine and Metabolic Science, 2021, 5, 100114.	1.6	2
18	The generation of enlarged eroded pores upon existing intracortical canals is a major contributor to endocortical trabecularization. Bone, 2020, 130, 115127.	2.9	13

#	Article	IF	CITATIONS
19	Disuse-induced loss of bone mineral density and bone strength is attenuated by post-lactational bone gain in NMRI mice. Bone, 2020, 131, 115183.	2.9	7
20	Rodent model of disuse-induced bone loss by hind limb injection with botulinum toxin A. MethodsX, 2020, 7, 101079.	1.6	9
21	Sex-Specific Effect of High-Fat Diet on Glycerol Metabolism in Murine Adipose Tissue and Liver. Frontiers in Endocrinology, 2020, 11, 577650.	3.5	15
22	Animal models of disuse-induced bone loss: study protocol for a systematic review. Systematic Reviews, 2020, 9, 185.	5.3	7
23	The Efficacy of PTH and Abaloparatide to Counteract Immobilization-Induced Osteopenia Is in General Similar. Frontiers in Endocrinology, 2020, 11, 588773.	3.5	10
24	Lipidoid-siRNA Nanoparticle-Mediated IL-1β Gene Silencing for Systemic Arthritis Therapy in a Mouse Model. Molecular Therapy, 2019, 27, 1424-1435.	8.2	34
25	No Signature of Osteocytic Osteolysis in Cortical Bone from Lactating NMRI Mice. Calcified Tissue International, 2019, 105, 308-315.	3.1	15
26	Canalicular Junctions in the Osteocyte Lacuno-Canalicular Network of Cortical Bone. ACS Nano, 2019, 13, 6421-6430.	14.6	32
27	Synchronous delivery of hydroxyapatite and connective tissue growth factor derived osteoinductive peptide enhanced osteogenesis. Journal of Controlled Release, 2019, 301, 129-139.	9.9	37
28	A follistatinâ€based molecule increases muscle and bone mass without affecting the red blood cell count in mice. FASEB Journal, 2019, 33, 6001-6010.	0.5	20
29	PTH (1–34) and growth hormone in prevention of disuse osteopenia and sarcopenia in rats. Bone, 2018, 110, 244-253.	2.9	31
30	The effect of oral dabigatran etexilate on bone density, strength, and microstructure in healthy mice. Bone Reports, 2018, 8, 9-17.	0.4	10
31	A soluble activin type IIA receptor mitigates the loss of femoral neck bone strength and cancellous bone mass in a mouse model of disuse osteopenia. Bone, 2018, 110, 326-334.	2.9	15
32	Disuse osteopenia induced by botulinum toxin is similar in skeletally mature young and aged female C57BL/6J mice. Journal of Bone and Mineral Metabolism, 2018, 36, 170-179.	2.7	14
33	Long-Term High-Dose Resveratrol Supplementation Reduces Bone Mass and Fracture Strength in Rats. Calcified Tissue International, 2018, 102, 337-347.	3.1	5
34	Neuronal Cell Adhesion Molecule 1 Regulates Leptin Sensitivity and Bone Mass. Calcified Tissue International, 2018, 102, 329-336.	3.1	9
35	Septins are critical regulators of osteoclastic bone resorption. Scientific Reports, 2018, 8, 13016.	3.3	15
36	Mice Knocked Out for the Primary Brain Calcification–Associated Gene Slc20a2 Show Unimpaired Prenatal Survival but Retarded Growth and Nodules in the Brain that Grow and Calcify Over Time. American Journal of Pathology, 2018, 188, 1865-1881.	3.8	24

#	Article	IF	CITATIONS
37	Intracortical Bone Mechanics Are Related to Pore Morphology and Remodeling in Human Bone. Journal of Bone and Mineral Research, 2018, 33, 2177-2185.	2.8	24
38	Zoledronic acid prevents disuse osteopenia and augments gene expression of osteoclastic differentiation markers in mice. Journal of Musculoskeletal Neuronal Interactions, 2018, 18, 165-175.	0.1	5
39	Zoledronate prevents lactation induced bone loss and results in additional post-lactation bone mass in mice. Bone, 2016, 87, 27-36.	2.9	15
40	Immobilization and long-term recovery results in large changes in bone structure and strength but no corresponding alterations of osteocyte lacunar properties. Bone, 2016, 91, 139-147.	2.9	38
41	Osteocyte lacunar properties and cortical microstructure in human iliac crest as a function of age and sex. Bone, 2016, 91, 11-19.	2.9	49
42	Systemic Treatment with Strontium Ranelate Does Not Influence the Healing of Femoral Mid-shaft Defects in Rats. Calcified Tissue International, 2016, 98, 206-214.	3.1	10
43	Organ and tissue level properties are more sensitive to age than osteocyte lacunar characteristics in rat cortical bone. Bone Reports, 2016, 4, 28-34.	0.4	10
44	Immobilization induced osteopenia is strain specific in mice. Bone Reports, 2015, 2, 59-67.	0.4	36
45	Osteocyte lacunar properties in rat cortical bone: Differences between lamellar and central bone. Journal of Structural Biology, 2015, 191, 59-67.	2.8	47
46	Vertical Trabeculae are Thinned More Than Horizontal Trabeculae in Skeletal-Unloaded Rats. Calcified Tissue International, 2015, 97, 516-526.	3.1	12
47	Age-related changes in vertebral and iliac crest 3D bone microstructure—differences and similarities. Osteoporosis International, 2015, 26, 219-228.	3.1	26
48	The Influence of Hemostatic Agents on Bone Healing After Sternotomy in a Porcine Model. Annals of Thoracic Surgery, 2015, 99, 1005-1011.	1.3	10
49	The effect of haemostatic devices on bone healing 6 months postoperatively in sternotomized pigs. European Journal of Cardio-thoracic Surgery, 2015, 48, 850-854.	1.4	4
50	A Comparison of Osteoclast-Rich and Osteoclast-Poor Osteopetrosis in Adult Mice Sheds Light on the Role of the Osteoclast in Coupling Bone Resorption and Bone Formation. Calcified Tissue International, 2014, 95, 83-93.	3.1	31
51	Additive effect of PTH (1–34) and zoledronate in the prevention of disuse osteopenia in rats. Bone, 2014, 66, 287-295.	2.9	34
52	Calcified Cartilage Islands in Rat Cortical Bone. Calcified Tissue International, 2013, 92, 330-338.	3.1	47
53	The effect of PTH(1-34) on fracture healing during different loading conditions. Journal of Bone and Mineral Research, 2013, 28, 2145-2155.	2.8	33
54	Age-related changes of vertical and horizontal lumbar vertebral trabecular 3D bone microstructure is different in women and men. Bone, 2013, 57, 47-55.	2.9	30

#	Article	IF	CITATIONS
55	No effect of risedronate on articular cartilage damage in the Dunkin Hartley guinea pig model of osteoarthritis. Scandinavian Journal of Rheumatology, 2013, 42, 408-416.	1.1	14
56	PTH (1–34), but not strontium ranelate counteract loss of trabecular thickness and bone strength in disuse osteopenic rats. Bone, 2013, 53, 51-58.	2.9	26
57	Osteoclasts are not crucial for hematopoietic stem cell maintenance in adult mice. Haematologica, 2013, 98, 1848-1855.	3.5	10
58	Changes in 3-dimensional bone structure indices in hypoparathyroid patients treated with PTH(1-84): A randomized controlled study. Journal of Bone and Mineral Research, 2012, 27, 781-788.	2.8	67
59	Loss of Bone Strength is Dependent on Skeletal Site in Disuse Osteoporosis in Rats. Calcified Tissue International, 2012, 90, 294-306.	3.1	43
60	Dissociation of Bone Resorption and Bone Formation in Adult Mice with a Non-Functional V-ATPase in Osteoclasts Leads to Increased Bone Strength. PLoS ONE, 2011, 6, e27482.	2.5	36
61	Strontium Is Incorporated into the Fracture Callus but Does Not Influence the Mechanical Strength of Healing Rat Fractures. Calcified Tissue International, 2011, 88, 142-152.	3.1	33
62	Relationship between articular cartilage damage and subchondral bone properties and meniscal ossification in the Dunkin Hartley guinea pig model of osteoarthritis. Scandinavian Journal of Rheumatology, 2011, 40, 391-399.	1.1	26
63	Cervical collagen and biomechanical strength in non-pregnant women with a history of cervical insufficiency. Reproductive Biology and Endocrinology, 2010, 8, 92.	3.3	31
64	Collagen concentration and biomechanical properties of samples from the lower uterine cervix in relation to age and parity in non-pregnant women. Reproductive Biology and Endocrinology, 2010, 8, 82.	3.3	48
65	STEREOLOGICAL CHALLENGES WHEN WORKING WITH HEART MUSCLE FIBRES. Image Analysis and Stereology, 2010, 29, 35.	0.9	1
66	Effect of voluntary exercise on number and volume of cardiomyocytes and their mitochondria in the mouse left ventricle. Basic Research in Cardiology, 2008, 103, 12-21.	5.9	62
67	Cardiac structure and function in a mouse model of uraemia without hypertension. Scandinavian Journal of Clinical and Laboratory Investigation, 2008, 68, 660-666.	1.2	14
68	Growth hormone increases the proliferation of existing cardiac myocytes and the total number of cardiac myocytes in the rat heart. Cardiovascular Research, 2007, 76, 400-408.	3.8	39
69	MMP-2 in the left rat ventricle is increased by growth hormone. Growth Hormone and IGF Research, 2006, 16, 193-201.	1.1	3
70	Design–based stereological estimation of the total number of cardiac myocytes in histological sections. Basic Research in Cardiology, 2005, 100, 311-319.	5.9	52
71	The total length of myocytes and capillaries, and total number of myocyte nuclei in the rat heart are time-dependently increased by growth hormone. Growth Hormone and IGF Research, 2005, 15, 256-264.	1.1	35
72	Growth hormone increases the total number of myocyte nuclei in the left ventricle of adult rats. Growth Hormone and IGF Research, 2002, 12, 106-115.	1.1	27

#	Article	IF	CITATIONS
73	Growth hormone influences the content and composition of collagen in the aorta from old rats. Mechanisms of Ageing and Development, 2002, 123, 627-635.	4.6	16
74	Growth hormone increases the total number of cardiac myocyte nuclei in young rats but not in old rats. Mechanisms of Ageing and Development, 2002, 123, 1353-1362.	4.6	15
75	The effect of growth hormone on rat myocardial collagen. Growth Hormone and IGF Research, 1999, 9, 123-130.	1.1	25
76	Inhibition of cross-links in collagen is associated with reduced stiffness of the aorta in young rats. Atherosclerosis, 1998, 140, 135-145.	0.8	155
77	Changes in biomechanical properties, composition of collagen and elastin, and advanced glycation endproducts of the rat aorta in relation to age. Atherosclerosis, 1996, 127, 155-165.	0.8	201
78	Growth hormone is not able to counteract osteopenia of rat cortical bone induced by Glucocorticoid with protracted effect. Bone, 1995, 17, 543-548.	2.9	32
79	Biosynthetic growth hormone changes the collagen and elastin contents and biomechanical properties of the rat aorta. European Journal of Endocrinology, 1991, 125, 49-57.	3.7	18