List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9494936/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Controlling toughness of polymer-grafted nanoparticle composites for impact mitigation. Soft Matter, 2022, 18, 256-261.	2.7	10
2	Tuning the mechanical impedance of disordered networks for impact mitigation. Soft Matter, 2022, 18, 2039-2045.	2.7	3
3	Quantifying the â€~press and peel' removal of particulates using elastomers and gels. Journal of Cultural Heritage, 2021, 48, 236-243.	3.3	8
4	Why Enhanced Subnanosecond Relaxations Are Important for Toughness in Polymer Glasses. Macromolecules, 2021, 54, 2518-2528.	4.8	12
5	Supersonic Impact Response of Polymer Thin Films via Large-Scale Atomistic Simulations. Nano Letters, 2021, 21, 5991-5997.	9.1	10
6	Importance of Sub-Nanosecond Fluctuations on the Toughness of Polycarbonate Glasses. Macromolecules, 2020, 53, 6672-6681.	4.8	12
7	Cutting to measure the elasticity and fracture of soft gels. Soft Matter, 2020, 16, 8826-8831.	2.7	5
8	Using microprojectiles to study the ballistic limit of polymer thin films. Soft Matter, 2020, 16, 3886-3890.	2.7	14
9	Insights into the Water Transport Mechanism in Polymeric Membranes from Neutron Scattering. Macromolecules, 2020, 53, 1443-1450.	4.8	30
10	Entanglement Density-Dependent Energy Absorption of Polycarbonate Films via Supersonic Fracture. ACS Macro Letters, 2019, 8, 806-811.	4.8	36
11	Characterizing salt permeability in polyamide desalination membranes using electrochemical impedance spectroscopy. Journal of Membrane Science, 2019, 583, 248-257.	8.2	35
12	Corona Treatment for Nanotransfer Molding Adhesion. ACS Applied Polymer Materials, 2019, 1, 997-1005.	4.4	4
13	Creating Aligned Nanopores by Magnetic Field Processing of Block Copolymer/Homopolymer Blends. ACS Macro Letters, 2019, 8, 261-266.	4.8	13
14	Maximizing Contact of Supersoft Bottlebrush Networks with Rough Surfaces To Promote Particulate Removal. ACS Applied Materials & Interfaces, 2019, 11, 45310-45318.	8.0	15
15	Compressing and Swelling To Study the Structure of Extremely Soft Bottlebrush Networks Prepared by ROMP. Macromolecules, 2018, 51, 2359-2366.	4.8	51
16	Star polymer-assembled thin film composite membranes with high separation performance and low fouling. Journal of Membrane Science, 2018, 555, 369-378.	8.2	37
17	Studying water and solute transport through desalination membranes via neutron radiography. Journal of Membrane Science, 2018, 548, 667-675.	8.2	2
18	Model Polymer Thin Films To Measure Structure and Dynamics of Confined, Swollen Networks. ACS Symposium Series, 2018, , 91-115.	0.5	0

#	Article	IF	CITATIONS
19	Size effects in plasma-enhanced nano-transfer adhesion. Soft Matter, 2018, 14, 9220-9226.	2.7	1
20	Viscoplastic fracture transition of a biopolymer gel. Soft Matter, 2018, 14, 4696-4701.	2.7	10
21	Functional group quantification of polymer nanomembranes with soft x-rays. Physical Review Materials, 2018, 2, .	2.4	16
22	Thin film composite reverse osmosis membranes prepared via layered interfacial polymerization. Journal of Membrane Science, 2017, 527, 121-128.	8.2	117
23	Thicknessâ€dependent swelling of molecular layerâ€byâ€layer polyamide nanomembranes. Journal of Polymer Science, Part B: Polymer Physics, 2017, 55, 412-417.	2.1	18
24	Quantifying the sensitivity of the network structure and properties from simultaneous measurements during photopolymerization. Soft Matter, 2017, 13, 3975-3983.	2.7	8
25	Signatures of Intracrystallite and Intercrystallite Limitations of Charge Transport in Polythiophenes. Macromolecules, 2016, 49, 7359-7369.	4.8	43
26	Nanoscale Pillar-Enhanced Tribological Surfaces as Antifouling Membranes. ACS Applied Materials & Interfaces, 2016, 8, 31433-31441.	8.0	46
27	Using Indentation to Quantify Transport Properties of Nanophase‣egregated Polymer Thin Films. Advanced Materials, 2015, 27, 4924-4930.	21.0	23
28	Tailor-Made Polyamide Membranes for Water Desalination. ACS Nano, 2015, 9, 345-355.	14.6	109
29	Bilayer Mass Transport Model for Determining Swelling and Diffusion in Coated, Ultrathin Membranes. ACS Applied Materials & amp; Interfaces, 2015, 7, 3492-3502.	8.0	15
30	Utilizing vapor swelling of surface-initiated polymer brushes toÂdevelop quantitative measurements of brush thermodynamics andÂgrafting density. Polymer, 2015, 72, 471-478.	3.8	32
31	Tailoring interlayer structure of molecular layer-by-layer assembled polyamide membranes for high separation performance. Applied Surface Science, 2015, 356, 659-667.	6.1	38
32	Deswelling of ultrathin molecular layer-by-layer polyamide water desalination membranes. Soft Matter, 2014, 10, 2949.	2.7	22
33	Tailoring the Permselectivity of Water Desalination Membranes via Nanoparticle Assembly. Langmuir, 2014, 30, 611-616.	3.5	25
34	Molecular Layerâ€by‣ayer Assembled Thinâ€Film Composite Membranes for Water Desalination. Advanced Materials, 2013, 25, 4778-4782.	21.0	258
35	Correlating chlorine-induced changes in mechanical properties to performance in polyamide-based thin film composite membranes. Journal of Membrane Science, 2013, 433, 72-79.	8.2	56
36	Mechanochromic Photonic Gels. Advanced Materials, 2013, 25, 3934-3947.	21.0	154

#	Article	IF	CITATIONS
37	Swelling of Ultrathin Molecular Layerâ€by‣ayer Polyamide Water Desalination Membranes. Journal of Polymer Science, Part B: Polymer Physics, 2013, 51, 1647-1655.	2.1	36
38	Swelling of ultrathin crosslinked polyamide water desalination membranes. Journal of Polymer Science, Part B: Polymer Physics, 2013, 51, 385-391.	2.1	37
39	Poroelastic relaxation of polymer-loaded hydrogels. Soft Matter, 2012, 8, 8234.	2.7	23
40	Quantifying the elasticity and viscosity of geometrically confined polymer films via thermal wrinkling. Journal of Polymer Science, Part B: Polymer Physics, 2012, 50, 1556-1561.	2.1	14
41	Spherical indentation testing of poroelastic relaxations in thin hydrogel layers. Soft Matter, 2012, 8, 1492-1498.	2.7	101
42	An automated spin-assisted approach for molecular layer-by-layer assembly of crosslinked polymer thin films. Review of Scientific Instruments, 2012, 83, 114102.	1.3	46
43	Adhesion Behavior of Soft Materials. , 2012, , 89-125.		2
44	Comment on "Viscoelastic properties of confined polymer films measured via thermal wrinkling―by E. P. Chan, K. A. Page, S. H. Im, D. L. Patton, R. Huang, and C. M. Stafford, Soft Matter, 2009,5, 4638–4641. Soft Matter, 2011, 7, 788-790.	2.7	2
45	Quantifying the Stress Relaxation Modulus of Polymer Thin Films via Thermal Wrinkling. ACS Applied Materials & Interfaces, 2011, 3, 331-338.	8.0	54
46	A "selfâ€pinning―adhesive based on responsive surface wrinkles. Journal of Polymer Science, Part B: Polymer Physics, 2011, 49, 40-44.	2.1	44
47	Block Copolymer Photonic Gel for Mechanochromic Sensing. Advanced Materials, 2011, 23, 4702-4706.	21.0	100
48	Poroelastic relaxation indentation of thin layers of gels. Journal of Applied Physics, 2011, 110, 086103.	2.5	61
49	Correlations between Mechanical and Electrical Properties of Polythiophenes. ACS Nano, 2010, 4, 7538-7544.	14.6	210
50	Viscoelastic properties of confined polymer films measured via thermal wrinkling. Soft Matter, 2009, 5, 4638.	2.7	61
51	Surface Wrinkles for Smart Adhesion. Advanced Materials, 2008, 20, 711-716.	21.0	451
52	A biodegradable and biocompatible gecko-inspired tissue adhesive. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 2307-2312.	7.1	490
53	WRINKLING POLYMERS FOR SURFACE STRUCTURE CONTROL AND FUNCTIONALITY. Series in Sof Condensed Matter, 2008, , 141-161.	0.1	0
54	Adhesion of Patterned Reactive Interfaces. Journal of Adhesion, 2007, 83, 473-489.	3.0	25

#	Article	IF	CITATIONS
55	Designing Model Systems for Enhanced Adhesion. MRS Bulletin, 2007, 32, 496-503.	3.5	72
56	Impact of Surface-Modified Nanoparticles on Glass Transition Temperature and Elastic Modulus of Polymer Thin Films. Macromolecules, 2007, 40, 7755-7757.	4.8	48
57	Spontaneous formation of stable aligned wrinkling patterns. Soft Matter, 2006, 2, 324.	2.7	160
58	Fabricating Microlens Arrays by Surface Wrinkling. Advanced Materials, 2006, 18, 3238-3242.	21.0	325
59	Quantifying release in step-and-flash imprint lithography. Journal of Vacuum Science & Technology B, 2006, 24, 2716.	1.3	16
60	An Orientationally Ordered Hierarchical Exfoliated Clayâ´'Block Copolymer Nanocomposite. Macromolecules, 2005, 38, 5170-5179.	4.8	64