Masayuki Ushio

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9494487/publications.pdf

Version: 2024-02-01

304602 197736 2,956 53 22 49 citations h-index g-index papers 71 71 71 3892 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Core microbiomes for sustainable agroecosystems. Nature Plants, 2018, 4, 247-257.	4.7	639
2	Fluctuating interaction network and time-varying stability of a natural fish community. Nature, 2018, 554, 360-363.	13.7	209
3	Variations in the soil microbial community composition of a tropical montane forest ecosystem: Does tree species matter?. Soil Biology and Biochemistry, 2008, 40, 2699-2702.	4.2	162
4	Environmental <scp>DNA</scp> enables detection of terrestrial mammals from forest pond water. Molecular Ecology Resources, 2017, 17, e63-e75.	2.2	158
5	Empirical dynamic modeling for beginners. Ecological Research, 2017, 32, 785-796.	0.7	154
6	Water temperature-dependent degradation of environmental DNA and its relation to bacterial abundance. PLoS ONE, 2017, 12, e0176608.	1,1	149
7	Functional diversity of microbial decomposers facilitates plant coexistence in a plant–microbe–soil feedback model. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 14251-14256.	3.3	130
8	Tree species-mediated spatial patchiness of the composition of microbial community and physicochemical properties in the topsoils of a tropical montane forest. Soil Biology and Biochemistry, 2010, 42, 1588-1595.	4.2	97
9	Tree species effects on soil enzyme activities through effects on soil physicochemical and microbial properties in a tropical montane forest on Mt. Kinabalu, Borneo. Pedobiologia, 2010, 53, 227-233.	0.5	91
10	Microbial communities on flower surfaces act as signatures of pollinator visitation. Scientific Reports, 2015, 5, 8695.	1.6	80
11	Demonstration of the potential of environmental DNA as a tool for the detection of avian species. Scientific Reports, 2018, 8, 4493.	1.6	78
12	Effects of condensed tannins in conifer leaves on the composition and activity of the soil microbial community in a tropical montane forest. Plant and Soil, 2013, 365, 157-170.	1.8	75
13	Linkage of root physiology and morphology as an adaptation to soil phosphorus impoverishment in tropical montane forests. Functional Ecology, 2015, 29, 1235-1245.	1.7	66
14	Tropical-forest mammals as detected by environmental DNA at natural saltlicks in Borneo. Biological Conservation, 2017, 210, 281-285.	1.9	54
15	Scale Dependence of Predator–Prey Mass Ratio. Advances in Ecological Research, 2011, 45, 269-302.	1.4	51
16	Evaluating intraspecific genetic diversity using environmental DNA and denoising approach: A case study using tank water. Environmental DNA, 2020, 2, 42-52.	3.1	47
17	Predator–prey body size relationships when predators can consume prey larger than themselves. Biology Letters, 2013, 9, 20121193.	1.0	44
18	Seasonal and longâ€ŧerm patterns in litterfall in a Bornean tropical rainforest. Ecological Research, 2019, 34, 31-39.	0.7	36

#	Article	IF	CITATIONS
19	Use of a filter cartridge combined with intraâ€cartridge beadâ€beating improves detection of microbial DNA from water samples. Methods in Ecology and Evolution, 2019, 10, 1142-1156.	2.2	34
20	In Situ Enzyme Activity in the Dissolved and Particulate Fraction of the Fluid from Four Pitcher Plant Species of the Genus Nepenthes. PLoS ONE, 2011, 6, e25144.	1.1	30
21	Reconstructing large interaction networks from empirical time series data. Ecology Letters, 2021, 24, 2763-2774.	3.0	30
22	Environmental DNA analysis shows high potential as a tool for estimating intraspecific genetic diversity in a wild fish population. Molecular Ecology Resources, 2020, 20, 1248-1258.	2.2	29
23	Temperature is a dominant driver of distinct annual seasonality of leaf litter production of equatorial tropical rain forests. Journal of Ecology, 2021, 109, 727-736.	1.9	27
24	Quantitative assessment of multiple fish species around artificial reefs combining environmental DNA metabarcoding and acoustic survey. Scientific Reports, 2021, 11, 19477.	1.6	26
25	Quantitative evaluation of intraspecific genetic diversity in a natural fish population using environmental DNA analysis. Molecular Ecology Resources, 2020, 20, 1323-1332.	2.2	26
26	Social and ecological factors associated with the use of non-timber forest products by people in rural Borneo. Biological Conservation, 2016, 204, 340-349.	1.9	24
27	Interaction capacity as a potential driver of community diversity. Proceedings of the Royal Society B: Biological Sciences, 2022, 289, 20212690.	1.2	24
28	A Coexisting Fungal-Bacterial Community Stabilizes Soil Decomposition Activity in a Microcosm Experiment. PLoS ONE, 2013, 8, e80320.	1.1	23
29	Herbivorous insect decreases plant nutrient uptake: the role of soil nutrient availability and association of belowâ€ground symbionts. Ecological Entomology, 2014, 39, 511-518.	1.1	22
30	Repressive chromatin modification underpins the long-term expression trend of a perennial flowering gene in nature. Nature Communications, 2020, 11, 2065.	5.8	20
31	Plant–soil feedbacks and the dominance of conifers in a tropical montane forest in Borneo. Ecological Monographs, 2017, 87, 105-129.	2.4	19
32	Dynamic and synergistic influences of air temperature and rainfall on general flowering in a Bornean lowland tropical forest. Ecological Research, 2020, 35, 17-29.	0.7	19
33	Are networks of trophic interactions sufficient for understanding the dynamics of multiâ€trophic communities? Analysis of a triâ€trophic insect foodâ€web timeâ€series. Ecology Letters, 2021, 24, 543-552.	3.0	18
34	Environmental DNA metabarcoding reveals the presence of a small, quick-moving, nocturnal water shrew in a forest stream. Conservation Genetics, 2020, 21, 1079-1084.	0.8	16
35	Phenolic Control of Plant Nitrogen Acquisition through the Inhibition of Soil Microbial Decomposition Processes: A Plant-Microbe Competition Model. Microbes and Environments, 2009, 24, 180-187.	0.7	14
36	High-throughput sequencing shows inconsistent results with a microscope-based analysis of the soil prokaryotic community. Soil Biology and Biochemistry, 2014, 76, 53-56.	4.2	13

#	Article	IF	CITATIONS
37	High contribution of Synechococcus to phytoplankton biomass in the aphotic hypolimnion in a deep freshwater lake (Lake Biwa, Japan). Aquatic Microbial Ecology, 2015, 75, 69-79.	0.9	13
38	Causal analysis of the temperature impact on deep-sea biodiversity. Biology Letters, 2021, 17, 20200666.	1.0	12
39	A Meta-Analysis of the Global Distribution Pattern of Condensed Tannins in Tree Leaves. Open Ecology Journal, 2011, 4, 18-23.	2.0	10
40	An efficient earlyâ€pooling protocol for environmental <scp>DNA</scp> metabarcoding. Environmental DNA, 2022, 4, 1212-1228.	3.1	9
41	A lognormal distribution of the lengths of terminal twigs on self-similar branches of elm trees. Proceedings of the Royal Society B: Biological Sciences, 2017, 284, 20162395.	1.2	8
42	CARD-FISH analysis of prokaryotic community composition and abundance along small-scale vegetation gradients in a dry arctic tundra ecosystem. Soil Biology and Biochemistry, 2013, 64, 147-154.	4.2	6
43	Idea paper: Predicting culturability of microbes from population dynamics under field conditions. Ecological Research, 2020, 35, 586-590.	0.7	6
44	Forecasting Ecological Time Series Using Empirical Dynamic Modeling: A Tutorial for Simplex Projection and S-map. Theoretical Biology, 2020, , 193-213.	0.0	6
45	Complementary molecular methods reveal comprehensive phylogenetic diversity integrating inconspicuous lineages of early-diverged wood-decaying mushrooms. Scientific Reports, 2020, 10, 3057.	1.6	5
46	Evaluation of seasonal dynamics of fungal <scp>DNA</scp> assemblages in a flowâ€regulated stream in a restored forest using <scp>eDNA</scp> metabarcoding. Environmental Microbiology, 2021, 23, 4797-4806.	1.8	5
47	Dynamic Scaling in the Growth of a Non-Branching Plant, Cardiocrinum cordatum. PLoS ONE, 2012, 7, e45317.	1.1	5
48	Influence of potential grazers on picocyanobacterial abundance in Lake Biwa revealed with empirical dynamic modeling. Inland Waters, 2020, 10, 386-396.	1.1	4
49	A data-driven approach to complex ecological systems. , 2020, , 116-133.		4
50	Effect of water depth on predation frequency by diving beetles on mosquito larvae prey. Entomological Science, 2015, 18, 519-522.	0.3	3
51	Patterns of community composition and diversity in latent fungi of living Quercus serrata trunks across a range of oak wilt prevalence and climate variables in Japan. Fungal Ecology, 2022, 59, 101095.	0.7	3
52	The effects of the floral infection by a bacterial pathogen in a dioecious plant, <i>Mallotus japonicus</i> (Euphorbiaceae). Population Ecology, 2023, 65, 231-239.	0.7	3
53	Contrasting microbial communities on male and female flowers of a dioecious plant, <i>Mallotus japonicus</i> (Euphorbiaceae). Environmental DNA, 2022, 4, 565-579.	3.1	3