
Jiantao Guo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/949441/publications.pdf Version: 2024-02-01

Ιμανιτλο Οιιο

#	Article	IF	CITATIONS
1	Genetic Code Expansion Through Quadruplet Codon Decoding. Journal of Molecular Biology, 2022, 434, 167346.	4.2	12
2	Genetic encoding of a nonhydrolyzable phosphotyrosine analog in mammalian cells. Chemical Communications, 2022, 58, 5897-5900.	4.1	7
3	Noncanonical amino acid mutagenesis in response to recoding signal-enhanced quadruplet codons. Nucleic Acids Research, 2022, 50, e94-e94.	14.5	7
4	Engineering of a Small Protein Scaffold To Recognize Sulfotyrosine with High Specificity. ACS Chemical Biology, 2021, 16, 1508-1517.	3.4	9
5	Studying Protein Tyrosine O ‣ulfation in Mammalian Cells with Genetically Encoded Sulfotyrosine. Current Protocols, 2021, 1, e301.	2.9	0
6	Functional genetic encoding of sulfotyrosine in mammalian cells. Nature Communications, 2020, 11, 4820.	12.8	24
7	Design of fluorescent protein-based sensors through a general protection-deprotection strategy. Methods in Enzymology, 2020, 640, 63-82.	1.0	1
8	Engineering Carboxylic Acid Reductase (CAR) through a Whole-Cell Growth-Coupled NADPH Recycling Strategy. ACS Synthetic Biology, 2020, 9, 1632-1637.	3.8	23
9	Direct biosynthesis of adipic acid from lignin-derived aromatics using engineered Pseudomonas putida KT2440. Metabolic Engineering, 2020, 59, 151-161.	7.0	44
10	Engineering and characterization of hybrid carboxylic acid reductases. Journal of Biotechnology, 2019, 304, 52-56.	3.8	11
11	Engineering of a sulfotyrosine-recognizing small protein scaffold for the study of protein tyrosine O-sulfation. Methods in Enzymology, 2019, 622, 67-89.	1.0	4
12	Genetic Incorporation of Noncanonical Amino Acids Using Two Mutually Orthogonal Quadruplet Codons. ACS Synthetic Biology, 2019, 8, 1168-1174.	3.8	30
13	Manipulation of the precursor supply for high-level production of longifolene by metabolically engineered Escherichia coli. Scientific Reports, 2019, 9, 95.	3.3	23
14	Metabolic engineering of Escherichia coli for the de novo stereospecific biosynthesis of 1,2-propanediol through lactic acid. Metabolic Engineering Communications, 2019, 8, e00082.	3.6	30
15	Characterization of Carboxylic Acid Reductases for Biocatalytic Synthesis of Industrial Chemicals. ChemBioChem, 2018, 19, 1452-1460.	2.6	39
16	A high throughput approach for the generation of orthogonally interacting protein pairs. Scientific Reports, 2018, 8, 867.	3.3	2
17	Oxidation-induced generation of a mild electrophile for proximity-enhanced protein–protein crosslinking. Chemical Communications, 2018, 54, 4172-4175.	4.1	6
18	Deciphering molecular details in the assembly of alpha-type carboxysome. Scientific Reports, 2018, 8, 15062.	3.3	17

Jiantao Guo

4

#	Article	IF	CITATIONS
19	Controlling the Replication of a Genomically Recoded HIV-1 with a Functional Quadruplet Codon in Mammalian Cells. ACS Synthetic Biology, 2018, 7, 1612-1617.	3.8	20
20	Controlling Multicycle Replication of Live-Attenuated HIV-1 Using an Unnatural Genetic Switch. ACS Synthetic Biology, 2017, 6, 721-731.	3.8	35
21	Synthetic biology approach for the development of conditionally replicating HIV-1 vaccine. Journal of Chemical Technology and Biotechnology, 2017, 92, 455-462.	3.2	4
22	Fluorescent Protein-Based Turn-On Probe through a General Protection–Deprotection Design Strategy. ACS Sensors, 2017, 2, 961-966.	7.8	29
23	Improved Photoinduced Fluorogenic Alkene–Tetrazole Reaction for Protein Labeling. Bioconjugate Chemistry, 2017, 28, 2859-2864.	3.6	23
24	A genetically encoded cyclobutene probe for labelling of live cells. Chemical Communications, 2017, 53, 10604-10607.	4.1	17
25	Novel Fluorescence-Based Biosensors Incorporating Unnatural Amino Acids. Methods in Enzymology, 2017, 589, 191-219.	1.0	11
26	Fluorogenic protein labeling using a genetically encoded unstrained alkene. Chemical Science, 2017, 8, 1141-1145.	7.4	42
27	A photoactivatable Src homology 2 (SH2) domain. RSC Advances, 2016, 6, 51120-51124.	3.6	4
28	Metabolic engineering of Escherichia coli for the production of hydroxy fatty acids from glucose. BMC Biotechnology, 2016, 16, 26.	3.3	33
29	Evolution of Src Homology 2 (SH2) Domain to Recognize Sulfotyrosine. ACS Chemical Biology, 2016, 11, 2551-2557.	3.4	13
30	Sulfotyrosine dipeptide: Synthesis and evaluation as HIV-entry inhibitor. Bioorganic Chemistry, 2016, 68, 105-111.	4.1	4
31	Systematic Evolution and Study of UAGN Decoding tRNAs in a Genomically Recoded Bacteria. Scientific Reports, 2016, 6, 21898.	3.3	30
32	Biotechnological production of 1,2,4-butanetriol: An efficient process to synthesize energetic material precursor from renewable biomass. Scientific Reports, 2016, 5, 18149.	3.3	51
33	Inhibiting Hexamer Disassembly of Human UDP-Glucose Dehydrogenase by Photoactivated Amino Acid Cross-Linking. Biochemistry, 2016, 55, 3157-3164.	2.5	7
34	Engineering Escherichia coli for high-yield geraniol production with biotransformation of geranyl acetate to geraniol under fed-batch culture. Biotechnology for Biofuels, 2016, 9, 58.	6.2	61
35	Biosynthetic pathway for acrylic acid from glycerol in recombinant Escherichia coli. Applied Microbiology and Biotechnology, 2016, 100, 4901-4907.	3.6	13

Heterologous Pathway Engineering. , 2016, , 31-52.

Jiantao Guo

#	Article	IF	CITATIONS
37	Stereospecific Microbial Conversion of Lactic Acid into 1,2-Propanediol. ACS Synthetic Biology, 2015, 4, 378-382.	3.8	27
38	Fine-tuning Interaction between Aminoacyl-tRNA Synthetase and tRNA for Efficient Synthesis of Proteins Containing Unnatural Amino Acids. ACS Synthetic Biology, 2015, 4, 207-212.	3.8	28
39	Construction of a Liveâ€Attenuated HIVâ€1 Vaccine through Genetic Code Expansion. Angewandte Chemie - International Edition, 2014, 53, 4867-4871.	13.8	49
40	Expanding the chemistry of fluorescent protein biosensors through genetic incorporation of unnatural amino acids. Molecular BioSystems, 2013, 9, 2961.	2.9	62
41	A Genetically Encoded Fluorescent Probe in Mammalian Cells. Journal of the American Chemical Society, 2013, 135, 12540-12543.	13.7	169
42	Molecular recognition of sulfotyrosine and phosphotyrosine by the Src homology 2 domain. Molecular BioSystems, 2013, 9, 1829.	2.9	14
43	Sequential binding of large molecules to hairy MOFs. Chemical Communications, 2013, 49, 6641.	4.1	12
44	An Expanded Genetic Code in Mammalian Cells with a Functional Quadruplet Codon. ACS Chemical Biology, 2013, 8, 1640-1645.	3.4	94
45	A Proline-Based Phosphine Template for Staudinger Ligation. Organic Letters, 2012, 14, 4694-4697.	4.6	12
46	Unnatural Amino Acid Mutagenesis of Fluorescent Proteins. Angewandte Chemie - International Edition, 2012, 51, 10132-10135.	13.8	67
47	Genetic Incorporation of Unnatural Amino Acids into Proteins in Mycobacterium tuberculosis. PLoS ONE, 2010, 5, e9354.	2.5	55
48	A Facile System for Encoding Unnatural Amino Acids in Mammalian Cells. Angewandte Chemie - International Edition, 2009, 48, 4052-4055.	13.8	241
49	Evolution of Amber Suppressor tRNAs for Efficient Bacterial Production of Proteins Containing Nonnatural Amino Acids. Angewandte Chemie - International Edition, 2009, 48, 9148-9151.	13.8	140
50	Genetic Incorporation of a Small, Environmentally Sensitive, Fluorescent Probe into Proteins in <i>Saccharomyces cerevisiae</i> . Journal of the American Chemical Society, 2009, 131, 12921-12923.	13.7	183
51	Addition of an αâ€Hydroxy Acid to the Genetic Code of Bacteria. Angewandte Chemie - International Edition, 2008, 47, 722-725.	13.8	56
52	Site‧pecific Incorporation of Methyl―and Acetyl‣ysine Analogues into Recombinant Proteins. Angewandte Chemie - International Edition, 2008, 47, 6399-6401.	13.8	113
53	Characterization of thermal diffusivity of micro/nanoscale wires by transient photo-electro-thermal technique. Applied Physics A: Materials Science and Processing, 2007, 87, 599-605.	2.3	26
54	Synthesis of Aminoshikimic Acid. Organic Letters, 2004, 6, 1585-1588.	4.6	39

#	Article	IF	CITATIONS
55	Kanosamine Biosynthesis:  A Likely Source of the Aminoshikimate Pathway's Nitrogen Atom. Journal of the American Chemical Society, 2002, 124, 10642-10643.	13.7	63
56	Biosynthesis of 1-Deoxy-1-imino-d-erythrose 4-Phosphate:  A Defining Metabolite in the Aminoshikimate Pathway. Journal of the American Chemical Society, 2002, 124, 528-529.	13.7	40
57	Analysis of a Sector Crack in a Three-Dimensional Voronoi Polycrystal With Microstructural Stresses. Journal of Applied Mechanics, Transactions ASME, 2000, 67, 50-58.	2.2	12