Hironori Funabiki

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9494335/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Structural Mechanics of the Alpha-2-Macroglobulin Transformation. Journal of Molecular Biology, 2022, 434, 167413.	2.0	9
2	CENP-A chromatin prevents replication stress at centromeres to avoid structural aneuploidy. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	49
3	Linker histone H1.8 inhibits chromatin binding of condensins and DNA topoisomerase II to tune chromosome length and individualization. ELife, 2021, 10, .	2.8	29
4	Structural features of nucleosomes in interphase and metaphase chromosomes. Molecular Cell, 2021, 81, 4377-4397.e12.	4.5	27
5	Structural basis for the inhibition of cGAS by nucleosomes. Science, 2020, 370, 455-458.	6.0	149
6	Regulation and Consequences of cGAS Activation by Self-DNA. Trends in Cell Biology, 2020, 30, 594-605.	3.6	54
7	The Cytoplasmic DNA Sensor cGAS Promotes Mitotic Cell Death. Cell, 2019, 178, 302-315.e23.	13.5	267
8	Correcting aberrant kinetochore microtubule attachments: a hidden regulation of Aurora B on microtubules. Current Opinion in Cell Biology, 2019, 58, 34-41.	2.6	29
9	HELLS and CDCA7 comprise a bipartite nucleosome remodeling complex defective in ICF syndrome. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E876-E885.	3.3	88
10	Protein Immunodepletion and Complementation in Xenopus laevis Egg Extracts. Cold Spring Harbor Protocols, 2018, 2018, pdb.prot097113.	0.2	6
11	CDCA7 and HELLS mutations undermine nonhomologous end joining in centromeric instability syndrome. Journal of Clinical Investigation, 2018, 129, 78-92.	3.9	62
12	Integrity of the human centromere DNA repeats is protected by CENP-A, CENP-C, and CENP-T. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 1928-1933.	3.3	93
13	Dual recognition of chromatin and microtubules by INCENP is important for mitotic progression. Journal of Cell Biology, 2017, 216, 925-941.	2.3	36
14	ZSCAN10 expression corrects the genomic instability of iPSCs from aged donors. Nature Cell Biology, 2017, 19, 1037-1048.	4.6	35
15	Nucleosome-Dependent Pathways That Control Mitotic Progression. Cold Spring Harbor Symposia on Quantitative Biology, 2017, 82, 173-185.	2.0	4
16	Interphase Positioning of Centromeres Sets Up Spindle Assembly. Developmental Cell, 2016, 39, 527-528.	3.1	0
17	Heterogeneous architecture of vertebrate kinetochores revealed by three-dimensional superresolution fluorescence microscopy. Molecular Biology of the Cell, 2016, 27, 3395-3404.	0.9	18
18	VCP/p97 Extracts Sterically Trapped Ku70/80 Rings from DNA in Double-Strand Break Repair. Molecular Cell, 2016, 64, 189-198.	4.5	91

Hironori Funabiki

#	Article	IF	CITATIONS
19	Nucleosome functions in spindle assembly and nuclear envelope formation. BioEssays, 2015, 37, 1074-1085.	1.2	23
20	Kinetochore function is controlled by a phospho-dependent coexpansion of inner and outer components. Journal of Cell Biology, 2015, 210, 899-916.	2.3	66
21	Nuclear assembly shaped by microtubule dynamics. Nucleus, 2014, 5, 40-46.	0.6	11
22	Nucleosomal regulation of chromatin composition and nuclear assembly revealed by histone depletion. Nature Structural and Molecular Biology, 2014, 21, 617-625.	3.6	93
23	Autoinhibition and Polo-Dependent Multisite Phosphorylation Restrict Activity of the Histone H3 Kinase Haspin to Mitosis. Molecular Cell, 2013, 52, 734-745.	4.5	71
24	Chromatin-Bound Xenopus Dppa2 Shapes the Nucleus by Locally Inhibiting Microtubule Assembly. Developmental Cell, 2013, 27, 47-59.	3.1	54
25	Making an effective switch at the kinetochore by phosphorylation and dephosphorylation. Chromosoma, 2013, 122, 135-158.	1.0	115
26	An SCF complex containing Fbxl12 mediates DNA damage-induced Ku80 ubiquitylation. Cell Cycle, 2013, 12, 587-595.	1.3	55
27	Xenopus Shugoshin 2 regulates the spindle assembly pathway mediated by the chromosomal passenger complex. EMBO Journal, 2012, 31, 1467-1479.	3.5	33
28	The chromosomal passenger complex (CPC): from easy rider to the godfather of mitosis. Nature Reviews Molecular Cell Biology, 2012, 13, 789-803.	16.1	737
29	Structural Basis for Recognition of H3T3ph and Smac/DIABLO N-terminal Peptides by Human Survivin. Structure, 2012, 20, 185-195.	1.6	60
30	To Cut or NoCut in mitosis. Nature Reviews Molecular Cell Biology, 2011, 12, 463-463.	16.1	0
31	KNL1/Spc105 Recruits PP1 to Silence the Spindle Assembly Checkpoint. Current Biology, 2011, 21, 942-947.	1.8	212
32	Survivin Reads Phosphorylated Histone H3 Threonine 3 to Activate the Mitotic Kinase Aurora B. Science, 2010, 330, 235-239.	6.0	431
33	Dual Detection of Chromosomes and Microtubules by the Chromosomal Passenger Complex Drives Spindle Assembly. Developmental Cell, 2010, 18, 903-912.	3.1	91
34	Identification of SMARCAL1 as a Component of the DNA Damage Response. Journal of Biological Chemistry, 2009, 284, 35951-35961.	1.6	98
35	Correcting aberrant kinetochore microtubule attachments: an Aurora B-centric view. Current Opinion in Cell Biology, 2009, 21, 51-58.	2.6	130
36	Ku80 removal from DNA through double strand break–induced ubiquitylation. Journal of Cell Biology, 2008, 182, 467-479.	2.3	133

Hironori Funabiki

#	Article	IF	CITATIONS
37	Chromosomal Enrichment and Activation of the Aurora B Pathway Are Coupled to Spatially Regulate Spindle Assembly. Developmental Cell, 2007, 12, 31-43.	3.1	187
38	Regulation of HP1–chromatin binding by histone H3 methylation and phosphorylation. Nature, 2005, 438, 1116-1122.	13.7	834
39	Two Birds with One Stone— Dealing with Nuclear Transport and Spindle Assembly. Cell, 2005, 121, 157-158.	13.5	5
40	The Chromosomal Passenger Complex Is Required for Chromatin-Induced Microtubule Stabilization and Spindle Assembly. Cell, 2004, 118, 187-202.	13.5	380
41	The Xenopus Chromokinesin Xkid Is Essential for Metaphase Chromosome Alignment and Must Be Degraded to Allow Anaphase Chromosome Movement. Cell, 2000, 102, 411-424.	13.5	296