
Veronica Saletti

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9493953/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A recurrent de novo mutation in KCNC1 causes progressive myoclonus epilepsy. Nature Genetics, 2015, 47, 39-46.	21.4	245
2	The molecular landscape of glioma in patients with Neurofibromatosis 1. Nature Medicine, 2019, 25, 176-187.	30.7	145
3	Genotype-Phenotype Correlation in NF1: Evidence for a More Severe Phenotype Associated with Missense Mutations Affecting NF1 Codons 844–848. American Journal of Human Genetics, 2018, 102, 69-87.	6.2	144
4	Intrathecal methotrexate affects cognitive function in children with medulloblastoma. Neurology, 2002, 59, 48-53.	1.1	138
5	Sepiapterin reductase deficiency: A Treatable Mimic of Cerebral Palsy. Annals of Neurology, 2012, 71, 520-530.	5.3	125
6	Late neuropsychological and behavioural outcome of children surgically treated for craniopharyngioma. Child's Nervous System, 1998, 14, 179-184.	1.1	92
7	Clinical spectrum of individuals with pathogenic <i> N F1 </i> missense variants affecting p.Met1149, p.Arg1276, and p.Lys1423: genotype–phenotype study in neurofibromatosis type 1. Human Mutation, 2020, 41, 299-315.	2.5	80
8	MRI features of cerebral lesions and cognitive functions in preterm spastic diplegic children. Pediatric Neurology, 1996, 15, 207-212.	2.1	77
9	Neuropsychologic Effects of Frontal Lobe Epilepsy in Children. Journal of Child Neurology, 2002, 17, 661-667.	1.4	63
10	Genetic and phenotypic spectrum associated with IFIH1 gainâ€ofâ€function. Human Mutation, 2020, 41, 837-849.	2.5	63
11	Novel mutations in the CDKL5 gene, predicted effects and associated phenotypes. Neurogenetics, 2009, 10, 241-250.	1.4	62
12	Expanding the clinical phenotype of individuals with a 3-bp in-frame deletion of the NF1 gene (c.2970_2972del): an update of genotype–phenotype correlation. Genetics in Medicine, 2019, 21, 867-876.	2.4	62
13	Unilateral frontal lobe epilepsy affects executive functions in children. Neurological Sciences, 2005, 26, 263-270.	1.9	53
14	A novel <i>CLN8</i> mutation in late-infantile-onset neuronal ceroid lipofuscinosis (LINCL) reveals aspects of CLN8 neurobiological function. Human Mutation, 2009, 30, 1104-1116.	2.5	53
15	Expanding the phenotypic spectrum of Allan–Herndon–Dudley syndrome in patients with <i><scp>SLC</scp>16A2</i> mutations. Developmental Medicine and Child Neurology, 2019, 61, 1439-1447.	2.1	53
16	Diagnosis and treatment of Chiari malformation and syringomyelia in adults: international consensus document. Neurological Sciences, 2022, 43, 1327-1342.	1.9	42
17	Clinical spectrum of PTEN mutation in pediatric patients. A bicenter experience. European Journal of Medical Genetics, 2019, 62, 103596.	1.3	39
18	Neuroradiological diagnosis of Chiari malformations. Neurological Sciences, 2011, 32, 283-286.	1.9	34

VERONICA SALETTI

#	Article	IF	CITATIONS
19	Molecular Genetics and Interferon Signature in the Italian Aicardi Goutières Syndrome Cohort: Report of 12 New Cases and Literature Review. Journal of Clinical Medicine, 2019, 8, 750.	2.4	29
20	Treatment for Chiari 1 malformation (CIM): analysis of a pediatric surgical series. Neurological Sciences, 2011, 32, 321-324.	1.9	25
21	126 novel mutations in Italian patients with neurofibromatosis type 1. Molecular Genetics & Genomic Medicine, 2015, 3, 513-525.	1.2	25
22	Progressive bone impairment with age and pubertal development in neurofibromatosis type I. Archives of Osteoporosis, 2018, 13, 93.	2.4	25
23	Diagnosis and treatment of Chiari malformation type 1 in children: the International Consensus Document. Neurological Sciences, 2022, 43, 1311-1326.	1.9	24
24	Can Chiari malformation negatively affect higher mental functioning in developmental age?. Neurological Sciences, 2011, 32, 307-309.	1.9	22
25	A <i>CDKL5</i> mutated child with precocious puberty. American Journal of Medical Genetics, Part A, 2009, 149A, 1046-1051.	1.2	21
26	Risk of Optic Pathway Glioma in Neurofibromatosis Type 1: No Evidence of Genotype–Phenotype Correlations in a Large Independent Cohort. Cancers, 2019, 11, 1838.	3.7	19
27	Neurological pictures in Paediatric Chiari I malformation. Neurological Sciences, 2011, 32, 295-298.	1.9	17
28	Encephalopathies with intracranial calcification in children: clinical and genetic characterization. Orphanet Journal of Rare Diseases, 2018, 13, 135.	2.7	17
29	GEN-O-MA project: an Italian network studying clinical course and pathogenic pathways of moyamoya disease—study protocol and preliminary results. Neurological Sciences, 2019, 40, 561-570.	1.9	15
30	Vascular Remodeling in Moyamoya Angiopathy: From Peripheral Blood Mononuclear Cells to Endothelial Cells. International Journal of Molecular Sciences, 2020, 21, 5763.	4.1	15
31	Chiari I malformation in a child with PTEN hamartoma tumor syndrome: Association or coincidence?. European Journal of Medical Genetics, 2017, 60, 261-264.	1.3	14
32	Non-Coding RNA and Tumor Development in Neurofibromatosis Type 1: ANRIL Rs2151280 Is Associated with Optic Glioma Development and a Mild Phenotype in Neurofibromatosis Type 1 Patients. Genes, 2019, 10, 892.	2.4	14
33	Visuoperceptual Impairment in Children with NF1: From Early Visual Processing to Procedural Strategies. Behavioural Neurology, 2019, 2019, 1-10.	2.1	14
34	A <i>PDE10A</i> de novo mutation causes childhoodâ€onset chorea with diurnal fluctuations. Movement Disorders, 2017, 32, 1646-1647.	3.9	13
35	Chiari I malformation in defined genetic syndromes in children: are there common pathways?. Child's Nervous System, 2019, 35, 1727-1739.	1.1	13
36	Verbal and Gestural Communication in Children With Bilateral Perisylvian Polymicrogyria. Journal of Child Neurology, 2007, 22, 1090-1098.	1.4	12

VERONICA SALETTI

#	Article	IF	CITATIONS
37	Electroencephalographic (EEG) Photoparoxysmal Responses Under 5 Years of Age. Journal of Child Neurology, 2015, 30, 1824-1830.	1.4	12
38	Novel mutations in SLC16A2 associated with a less severe phenotype of MCT8 deficiency. Metabolic Brain Disease, 2019, 34, 1565-1575.	2.9	12
39	The TAND checklist: a useful screening tool in children with tuberous sclerosis and neurofibromatosis type 1. Orphanet Journal of Rare Diseases, 2020, 15, 237.	2.7	12
40	The management of Chiari malformation type 1 and syringomyelia in children: a review of the literature. Neurological Sciences, 2021, 42, 4965-4995.	1.9	12
41	Chiari 1 malformation and untreated sagittal synostosis: a new subset of complex Chiari?. Child's Nervous System, 2019, 35, 1741-1753.	1.1	11
42	Plasma Lipid Profiling Contributes to Untangle the Complexity of Moyamoya Arteriopathy. International Journal of Molecular Sciences, 2021, 22, 13410.	4.1	11
43	Brain Tumors in NF1 Children: Influence on Neurocognitive and Behavioral Outcome. Cancers, 2019, 11, 1772.	3.7	10
44	The Key Search Subtest of the Behavioural Assessment of the Dysexecutive Syndrome in Children (BADS-C) Instrument Reveals Impaired Planning Without External Constraints in Children With Neurofibromatosis Type 1. Journal of Child Neurology, 2017, 32, 387-396.	1.4	9
45	Fluorescein-guided resection of plexiform neurofibromas: how I do it. Acta Neurochirurgica, 2019, 161, 2141-2145.	1.7	8
46	Paediatric Stroke: Review of the Literature and Possible Treatment Options, including Endovascular Approach. Stroke Research and Treatment, 2011, 2011, 1-11.	0.8	7
47	The absence that makes the difference: choroidal abnormalities in Legius syndrome. Journal of Human Genetics, 2017, 62, 1001-1004.	2.3	7
48	Clinical and Molecular Spectrum of Myotonia and Periodic Paralyses Associated With Mutations in SCN4A in a Large Cohort of Italian Patients. Frontiers in Neurology, 2020, 11, 646.	2.4	7
49	Neurological malignancies in neurofibromatosis type 1. Current Opinion in Oncology, 2019, 31, 554-561.	2.4	5
50	Simultaneous Detection of NF1, SPRED1, LZTR1, and NF2 Gene Mutations by Targeted NGS in an Italian Cohort of Suspected NF1 Patients. Genes, 2020, 11, 671.	2.4	5
51	Response to "characteristics of 2p15-p16.1 microdeletion syndrome: review and description of two additional patients― Congenital Anomalies (discontinued), 2015, 55, 191-192.	0.6	4
52	The noncoding RNA AK127244 in 2p16.3 locus: A new susceptibility region for neuropsychiatric disorders. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2018, 177, 557-562.	1.7	4
53	Language abilities and gestural communication in a girl with bilateral perisylvian syndrome: a clinical and rehabilitative follow-up. Neurological Sciences, 2010, 31, 471-481.	1.9	3
54	Legius Syndrome: two novel mutations in the SPRED1 gene. Human Genome Variation, 2015, 2, 15051.	0.7	3

#	Article	IF	CITATIONS
55	CCH Findings in Children with Complex and Essential Autistic Spectrum Disorder. Journal of Autism and Developmental Disorders, 2021, , 1.	2.7	2
56	The Lipid Asset Is Unbalanced in Peripheral Nerve Sheath Tumors. International Journal of Molecular Sciences, 2022, 23, 61.	4.1	2
57	Unique combination of myxopapillary ependymoma and conus lipoma with subcutaneous extension in an 11-month-old child. Child's Nervous System, 2018, 34, 597-599.	1.1	1