Nicole M Gilbert

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9493817/publications.pdf

Version: 2024-02-01

713013 566801 29 948 15 21 citations h-index g-index papers 30 30 30 1178 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Degradation, Foraging, and Depletion of Mucus Sialoglycans by the Vagina-adapted Actinobacterium Gardnerella vaginalis. Journal of Biological Chemistry, 2013, 288, 12067-12079.	1.6	138
2	<i>KRE</i> genes are required for βâ€1,6â€glucan synthesis, maintenance of capsule architecture and cell wall protein anchoring in <i>Cryptococcus neoformans</i> . Molecular Microbiology, 2010, 76, 517-534.	1.2	103
3	Urinary Tract Infection as a Preventable Cause of Pregnancy Complications: Opportunities, Challenges, and a Global Call to Action. Global Advances in Health and Medicine, 2013, 2, 59-69.	0.7	93
4	Clinical Features of Bacterial Vaginosis in a Murine Model of Vaginal Infection with Gardnerella vaginalis. PLoS ONE, 2013, 8, e59539.	1.1	93
5	Transient microbiota exposures activate dormant Escherichia coli infection in the bladder and drive severe outcomes of recurrent disease. PLoS Pathogens, 2017, 13, e1006238.	2.1	72
6	Gardnerella vaginalis and Prevotella bivia Trigger Distinct and Overlapping Phenotypes in a Mouse Model of Bacterial Vaginosis. Journal of Infectious Diseases, 2019, 220, 1099-1108.	1.9	71
7	Gardnerella vaginalis as a Cause of Bacterial Vaginosis: Appraisal of the Evidence From in vivo Models. Frontiers in Cellular and Infection Microbiology, 2020, 10, 168.	1.8	71
8	Immune Modulation by Group B Streptococcus Influences Host Susceptibility to Urinary Tract Infection by Uropathogenic Escherichia coli. Infection and Immunity, 2012, 80, 4186-4194.	1.0	55
9	Relationship between nugent score and vaginal epithelial exfoliation. PLoS ONE, 2017, 12, e0177797.	1.1	42
10	A Glycosylphosphatidylinositol Anchor Is Required for Membrane Localization but Dispensable for Cell Wall Association of Chitin Deacetylase 2 in Cryptococcus neoformans. MBio, 2012, 3, .	1.8	33
11	Glycan cross-feeding supports mutualism between Fusobacterium and the vaginal microbiota. PLoS Biology, 2020, 18, e3000788.	2.6	30
12	Impact of Host Age and Parity on Susceptibility to Severe Urinary Tract Infection in a Murine Model. PLoS ONE, 2014, 9, e97798.	1.1	25
13	Roles of the vagina and the vaginal microbiota in urinary tract infection: evidence from clinical correlations and experimental models. GMS Infectious Diseases, 2020, 8, Doc02.	0.5	22
14	Gardnerella vaginalis promotes group B Streptococcus vaginal colonization, enabling ascending uteroplacental infection in pregnant mice. American Journal of Obstetrics and Gynecology, 2021, 224, 530.e1-530.e17.	0.7	20
15	Host-Like Carbohydrates Promote Bloodstream Survival of Vibrio vulnificus <i>In Vivo</i> Infection and Immunity, 2015, 83, 3126-3136.	1.0	19
16	Low-dose inoculation of Escherichia coli achieves robust vaginal colonization and results in ascending infection accompanied by severe uterine inflammation in mice. PLoS ONE, 2019, 14, e0219941.	1.1	14
17	<i>Aerococcus urinae</i> Isolated from Women with Lower Urinary Tract Symptoms: <i>In Vitro</i> Aggregation and Genome Analysis. Journal of Bacteriology, 2020, 202, .	1.0	9
18	Covert pathogenesis: Transient exposures to microbes as triggers of disease. PLoS Pathogens, 2019, 15, e1007586.	2.1	7

#	Article	IF	CITATIONS
19	Recurrent Escherichia coli Urinary Tract Infection Triggered by Gardnerella vaginalis Bladder Exposure in Mice. Journal of Visualized Experiments, 2020, , .	0.2	7
20	A mouse model displays host and bacterial strain differences in <i>Aerococcus urinae</i> urinary tract infection. Biology Open, 2021, 10, .	0.6	6
21	Bladder Exposure to Gardnerella Activates Host Pathways Necessary for Escherichia coli Recurrent UTI. Frontiers in Cellular and Infection Microbiology, 2021, 11, 788229.	1.8	6
22	Gardnerella Exposures Alter Bladder Gene Expression and Augment Uropathogenic Escherichia coli Urinary Tract Infection in Mice. Frontiers in Cellular and Infection Microbiology, 0, 12, .	1.8	6
23	The Cell Wall of Cryptococcus. , 0, , 67-79.		4
24	Glycan cross-feeding supports mutualism between Fusobacterium and the vaginal microbiota., 2020, 18, e3000788.		0
25	Glycan cross-feeding supports mutualism between Fusobacterium and the vaginal microbiota. , 2020, 18, e3000788.		O
26	Glycan cross-feeding supports mutualism between Fusobacterium and the vaginal microbiota., 2020, 18, e3000788.		0
27	Glycan cross-feeding supports mutualism between Fusobacterium and the vaginal microbiota. , 2020, 18, e3000788.		О
28	Glycan cross-feeding supports mutualism between Fusobacterium and the vaginal microbiota., 2020, 18, e3000788.		0
29	Glycan cross-feeding supports mutualism between Fusobacterium and the vaginal microbiota. , 2020, 18, e3000788.		O