
Aiguo Kong

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9493639/publications.pdf Version: 2024-02-01

Δισμο Κονισ

#	Article	IF	CITATIONS
1	Scale synthesis of spherical porous porphyrinic organic polymers for efficient iodine capture and CO2 adsorption. Journal of Solid State Chemistry, 2022, 306, 122771.	2.9	6
2	Semi-enclosed Cu nanoparticles with porous nitrogen-doped carbon shells for efficient and tolerant nitrate electroreduction in neutral condition. Electrochimica Acta, 2022, 404, 139585.	5.2	10
3	Activated biochar derived from peanut shells as the electrode materials with excellent performance in Zinc-air battery and supercapacitance. Waste Management, 2021, 125, 257-267.	7.4	39
4	Mn-Pyridine N site-enriched Mn-N–C derived from covalent organic polymer for electrochemical oxygen reduction and capacitive storage. Ionics, 2021, 27, 5229-5239.	2.4	5
5	Covalent organic polymer-derived carbon nanotube-twined carbon nanospheres for efficient oxygen electroreduction and capacitance storage. Ionics, 2020, 26, 927-937.	2.4	16
6	3D Graphene arbon Nanotube Hybrid Supported Coupled Coâ€MnO Nanoparticles as Highly Efficient Bifunctional Electrocatalyst for Rechargeable Znâ€Air Batteries. Chemistry - an Asian Journal, 2020, 15, 3535-3541.	3.3	5
7	Covalent pendulous anthraquinone polymers coupled on graphenes for efficient capacitance storage in both alkaline and acidic media. Dalton Transactions, 2020, 49, 11640-11647.	3.3	2
8	Oriented Synthesis of Pyridinic-N Dopant within the Highly Efficient Multifunction Carbon-Based Materials for Oxygen Transformation and Energy Storage. ACS Sustainable Chemistry and Engineering, 2020, 8, 10431-10443.	6.7	14
9	Efficient Nitrate Reduction over Novel Covalent Ag-Salophen Polymer-Derived "Vein-Leaf-Apple―like Ag@Carbon Structures. ACS Applied Materials & Interfaces, 2020, 12, 33186-33195.	8.0	28
10	Nitrogen and sulfur-enriched porous bithiophene-melamine covalent organic polymers for effective capture of CO2 and iodine. Materials Letters, 2020, 277, 128291.	2.6	14
11	Highly efficient oxygen electrode catalyst derived from chitosan biomass by molten salt pyrolysis for zinc-air battery. Electrochimica Acta, 2020, 339, 135923.	5.2	15
12	Ultrafine Cu6Sn5 nanoalloys supported on nitrogen and sulfur-doped carbons as robust electrode materials for oxygen reduction and Li-ion battery. Journal of Alloys and Compounds, 2020, 824, 153958.	5.5	7
13	Unadulterated carbon as robust multifunctional electrocatalyst for overall water splitting and oxygen transformation. Nano Research, 2020, 13, 401-411.	10.4	30
14	N–S-codoped mesoporous carbons from melamine-2-thenaldehyde polymers on carbon nanotubes for oxygen reduction and Zn-air batteries. Journal of Solid State Chemistry, 2020, 287, 121348.	2.9	10
15	Fe-boosting Sn-based dual-shell nanostructures from new covalent porphyrin frameworks as efficient electrocatalysts for oxygen reduction and zinc-air batteries. Electrochimica Acta, 2019, 320, 134593.	5.2	24
16	Sn(OH)x-assisted synthesis of mesoporous Mn-porphyrinic frameworks and their carbon derivatives for electrocatalysis. Dalton Transactions, 2019, 48, 14678-14686.	3.3	3
17	Bio-inspired chitosan-heme-vitamin B ₁₂ -derived Fe–Co bimetallic-doped mesoporous carbons for efficiently electro-activating oxygen. Dalton Transactions, 2019, 48, 2338-2344.	3.3	11
18	Bimetallic Ni–Co composites anchored on a wool ball-like carbon framework as high-efficiency bifunctional electrodes for rechargeable Zn–air batteries. Catalysis Science and Technology, 2019, 9, 3469-3481.	4.1	9

Аісио Колс

#	Article	IF	CITATIONS
19	Pyrolytic Carbonâ€coated Cuâ€Fe Alloy Nanoparticles with High Catalytic Performance for Oxygen Electroreduction. Chemistry - an Asian Journal, 2019, 14, 2676-2684.	3.3	25
20	Pony-Size Silver-Copper and Silver-Iron Alloy Nanoparticles Confined in N-Free Mesoporous Carbon for Efficient Oxygen Electroreduction. Journal of the Electrochemical Society, 2019, 166, H272-H282.	2.9	6
21	Soft-confinement conversion of Co-Salen-organic-frameworks to uniform cobalt nanoparticles embedded within porous carbons as robust trifunctional electrocatalysts. Carbon, 2019, 149, 471-482.	10.3	24
22	Coupled nanocomposite Co _{5.47} N–Co ₃ Fe ₇ inlaid in a tremella-like carbon framework as a highly efficient multifunctional electrocatalyst for oxygen transformation and overall water splitting. Sustainable Energy and Fuels, 2019, 3, 3538-3549.	4.9	12
23	Hierarchical porous N-P-coupled carbons as metal-free bifunctional electro-catalysts for oxygen conversion. Applied Surface Science, 2019, 464, 380-387.	6.1	49
24	Copper-assisted thermal conversion of microporous covalent melamine-boroxine frameworks to hollow B, N-codoped carbon capsules as bifunctional metal-free electrode materials. Electrochimica Acta, 2019, 298, 210-218.	5.2	36
25	Pony-size Cu nanoparticles confined in N-doped mesoporous carbon by chemical vapor deposition for efficient oxygen electroreduction. Electrochimica Acta, 2018, 272, 233-241.	5.2	36
26	High-rate oxygen electroreduction over metal-free graphene foams embedding P–N coupled moieties in acidic media. Journal of Materials Chemistry A, 2018, 6, 4145-4151.	10.3	29
27	Low-Cost Sulfonated Phthalocyanines-Derived Hierarchical Porous Co-Cu-N-S-Doped Carbons for Efficient Oxygen Electroreduction. Journal of the Electrochemical Society, 2018, 165, H658-H666.	2.9	4
28	Covalent Phenanthroline Framework Derived FeS@Fe ₃ C Composite Nanoparticles Embedding in N‧â€Codoped Carbons as Highly Efficient Trifunctional Electrocatalysts. Advanced Functional Materials, 2018, 28, 1803973.	14.9	141
29	Electroactive Cuâ^'P oupled Moieties Doped in Hierarchically Porous Carbon as Efficient Catalysts for the Oxygenâ€Reduction Reaction. Chemistry - an Asian Journal, 2018, 13, 3314-3320.	3.3	5
30	Mesoporous nitrogen-doped carbon microfibers derived from Mg-biquinoline-dicarboxy compound for efficient oxygen electroreduction. Journal of Solid State Chemistry, 2017, 246, 399-403.	2.9	5
31	One-pot synthesized covalent porphyrin polymer-derived core-shell Fe3C@carbon for efficient oxygen electroreduction. Carbon, 2017, 116, 606-614.	10.3	33
32	TCNQ-induced in-situ electrochemical deposition for the synthesis of silver nanodendrites as efficient bifunctional electrocatalysts. Electrochimica Acta, 2017, 239, 45-55.	5.2	20
33	High-efficiency copper-based electrocatalysts for oxygen electroreduction by heating metal-phthalocyanine at superhigh temperature. International Journal of Hydrogen Energy, 2017, 42, 16557-16567.	7.1	11
34	Space-confined synthesis of multilayer Cu–N-doped graphene nanosheets for efficient oxygen electroreduction. Dalton Transactions, 2017, 46, 8586-8592.	3.3	28
35	Nanoporous carbon derived from a functionalized metal–organic framework as a highly efficient oxygen reduction electrocatalyst. Nanoscale, 2017, 9, 862-868.	5.6	56
36	Porphyrinic coordination lattices with fluoropillars. Journal of Materials Chemistry A, 2017, 5, 21189-21195.	10.3	26

Аісио Колс

#	Article	IF	CITATIONS
37	Ag-enhanced Catalytic Performance of Ordered Mesoporous Fe–N-Graphitic Carbons for Oxygen Electroreduction. Catalysis Letters, 2017, 147, 2745-2754.	2.6	9
38	Covalent Porphyrin Framework-Derived Fe ₂ P@Fe ₄ N-Coupled Nanoparticles Embedded in N-Doped Carbons as Efficient Trifunctional Electrocatalysts. ACS Applied Materials & Interfaces, 2017, 9, 32840-32850.	8.0	108
39	Ionic Liquid-Derived MoC Nanocomposites with Ordered Mesoporosity as Efficient Pt-Free Electrocatalyst for Hydrogen Evolution and Oxygen Reduction. Catalysis Letters, 2017, 147, 253-260.	2.6	21
40	Origin of the Ability of αâ€Fe ₂ O ₃ Mesopores to Activate Câ^'H Bonds in Methane. Chemistry - A European Journal, 2016, 22, 2046-2050.	3.3	7
41	Hierarchically porous few-layer porphyrinic carbon nanosheets formed by a VO _x -templating method for high-efficiency oxygen electroreduction. Journal of Materials Chemistry A, 2016, 4, 7305-7312.	10.3	13
42	High Efficient Mesoporous Co ₃ O ₄ Nanocatalysts For Methane Combustion at Low Temperature. ChemistrySelect, 2016, 1, 979-983.	1.5	8
43	Coordination compound-derived ordered mesoporous N-free Fe–P _x –C material for efficient oxygen electroreduction. Journal of Materials Chemistry A, 2016, 4, 14291-14297.	10.3	20
44	A novel and effective strategy for electro-oxidation of ethanol to acetaldehyde. Catalysis Communications, 2016, 86, 119-123.	3.3	5
45	Efficient oxygen electroreduction over ordered mesoporous Co–N-doped carbon derived from cobalt porphyrin. RSC Advances, 2016, 6, 15167-15174.	3.6	28
46	Synthesis of high-quality graphene sheets in task-specific ionic liquids and their photocatalytic performance. New Journal of Chemistry, 2016, 40, 3147-3154.	2.8	6
47	New Heterometallic Zirconium Metalloporphyrin Frameworks and Their Heteroatom-Activated High-Surface-Area Carbon Derivatives. Journal of the American Chemical Society, 2015, 137, 2235-2238.	13.7	254
48	From cage-in-cage MOF to N-doped and Co-nanoparticle-embedded carbon for oxygen reduction reaction. Dalton Transactions, 2015, 44, 6748-6754.	3.3	80
49	Heterometalâ€Embedded Organic Conjugate Frameworks from Alternating Monomeric Iron and Cobalt Metalloporphyrins and Their Application in Design of Porous Carbon Catalysts. Advanced Materials, 2015, 27, 3431-3436.	21.0	231
50	Efficient Oxygen Electroreduction: Hierarchical Porous Fe–N-doped Hollow Carbon Nanoshells. ACS Catalysis, 2015, 5, 3887-3893.	11.2	117
51	Al-coordination polymer-derived nanoporous nitrogen-doped carbon microfibers as metal-free catalysts for oxygen electroreduction and acetalization reactions. Journal of Materials Chemistry A, 2015, 3, 23716-23724.	10.3	54
52	Efficient oxygen reduction by nanocomposites of heterometallic carbide and nitrogen-enriched carbon derived from the cobalt-encapsulated indium–MOF. Chemical Communications, 2014, 50, 15619-15622.	4.1	89
53	Ordered Hierarchically Micro- and Mesoporous Fe–N _{<i>x</i>} -Embedded Graphitic Architectures as Efficient Electrocatalysts for Oxygen Reduction Reaction. ACS Catalysis, 2014, 4, 1793-1800.	11.2	211
54	Ordered mesoporous Fe (or Co)–N–graphitic carbons as excellent non-precious-metal electrocatalysts for oxygen reduction. Carbon, 2014, 78, 49-59.	10.3	84

Агсио Колс

#	Article	IF	CITATIONS
55	Synthesis of Urchin-Like FeF2Nanoarchitectures and Their Conversion into Three-Dimensional Urchin-Like Mesoporous α-Fe2O3Nanoarchitectures for Methane Activation. European Journal of Inorganic Chemistry, 2014, 2014, 4779-4787.	2.0	10
56	Ordered Mesoporous Feâ€Porphyrinâ€Like Architectures as Excellent Cathode Materials for the Oxygen Reduction Reaction in Both Alkaline and Acidic Media. Chemistry - A European Journal, 2013, 19, 16170-16175.	3.3	49
57	Low-temperature activation of methane over rare earth metals promoted Zn/HZSM-5 zeolite catalysts in the presence of ethylene. Journal of Natural Gas Chemistry, 2011, 20, 243-248.	1.8	17
58	Novel nanocasting method for synthesis of ordered mesoporous metal oxides. Journal of Porous Materials, 2011, 18, 107-112.	2.6	4
59	Novel and Selective Method for the Aerobic Oxidation of Benzylic Alcohols in the Absence of Metal Catalyst. Synthetic Communications, 2011, 41, 3066-3070.	2.1	4
60	Facile Preparation of Ionic Liquid Functionalized Magnetic Nano-Solid Acid Catalysts for Acetalization Reaction. Catalysis Letters, 2010, 135, 159-164.	2.6	59
61	A Waste-Free and Highly Effective Catalytic System for the Oxidation of Cysteine to Cystine. Catalysis Letters, 2010, 135, 291-294.	2.6	4
62	Synthesis and Characterization of Task-Specific Ionic Liquids Based on Peroxydisulfate and Their Application in Oxidation Reactions. European Journal of Inorganic Chemistry, 2010, 2010, 2283-2289.	2.0	11
63	Highly Efficient and Green Oxidation of Nitrotoluenes with Dioxygen as Oxidant in a Novel Homogeneous and Recyclable Catalytic System. Catalysis Letters, 2009, 131, 526-529.	2.6	17
64	Fast preparation of ordered crystalline mesoporous titania with high thermal stability and photo oxidation performance. Journal of Porous Materials, 2009, 16, 9-12.	2.6	1