
M V Shuba

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9493074/publications.pdf Version: 2024-02-01

МУЅнива

#	Article	IF	CITATIONS
1	Saturable absorption and nonlinear refraction in free-standing carbon nanotube film: Theory and experiment. Carbon, 2022, 186, 509-519.	5.4	2
2	Sensitive Detection of Industrial Pollutants Using Modified Electrochemical Platforms. Nanomaterials, 2022, 12, 1779.	1.9	12
3	Scattering of electromagnetic waves by two crossing metallic single-walled carbon nanotubes of finite length. Physical Review B, 2021, 103, .	1.1	9
4	Application of Raman Spectroscopy for Studying the Mechanisms of Neutrophil Activation by Carbon Nanotubes. Journal of Applied Spectroscopy, 2021, 88, 77-84.	0.3	2
5	Electromagnetic properties of a composite medium comprising chains of tunnel-coupled carbon nanotubes. Journal of the Belarusian State University Physics, 2021, , 61-70.	0.1	0
6	Rapid and delayed effects of single-walled carbon nanotubes in glioma cells. Nanotechnology, 2021, 32, 505103.	1.3	2
7	Enhancement of single-walled carbon nanotube accumulation in glioma cells exposed to low-strength electric field: Promising approach in cancer nanotherapy. Biochemical and Biophysical Research Communications, 2020, 529, 647-651.	1.0	5
8	Electromagnetic and optical responses of a composite material comprising individual single-walled carbon-nanotubes with a polymer coating. Scientific Reports, 2020, 10, 9361.	1.6	3
9	Effect of single-walled carbon nanotubes on the structural, physical, and mechanical properties of rat glial cell surface. Journal of Nanoparticle Research, 2020, 22, 1.	0.8	5
10	Single-walled carbon nanotubes as a photo-thermo-acoustic cancer theranostic agent: theory and proof of the concept experiment. Scientific Reports, 2020, 10, 22174.	1.6	27
11	Electrodynamics of carbon nanotubes. , 2019, , 1-29.		1
12	Frequency and density dependencies of the electromagnetic parameters of carbon nanotube and graphene nanoplatelet based composites in the microwave and terahertz ranges. Materials Research Express, 2019, 6, 095050.	0.8	6
13	Application of Raman Spectroscopy for Analysis of Carbon Nanotube Distribution in Living Cells. Journal of Applied Spectroscopy, 2019, 85, 1121-1127.	0.3	8
14	Electrokinetic Properties of 3D-Printed Conductive Lattice Structures. Applied Sciences (Switzerland), 2019, 9, 541.	1.3	3
15	Effect of chemical potential on Dyakonov–Tamm waves guided by a graphene-coated structurally chiral medium. Journal of Optics (United Kingdom), 2019, 21, 055002.	1.0	4
16	Electromagnetic Response of Carbon Nanotube-Based Composites. NATO Science for Peace and Security Series B: Physics and Biophysics, 2019, , 1-19.	0.2	0
17	Modeling the electrical properties of three-dimensional printed meshes with the theory of resistor lattices. Physical Review E, 2018, 97, 043307.	0.8	22
18	How effectively do carbon nanotube inclusions contribute to the electromagnetic performance of a composite material? Estimation criteria from microwave and terahertz measurements. Carbon, 2018, 129, 688-694.	5.4	18

Μ V Shuba

#	Article	IF	CITATIONS
19	Influence of nanotube length and density on the plasmonic terahertz response of single-walled carbon nanotubes. Journal Physics D: Applied Physics, 2018, 51, 014003.	1.3	24
20	Sign inversion in the terahertz photoconductivity of single-walled carbon nanotube films. Physical Review B, 2018, 98, .	1.1	10
21	Localized plasmon resonance in boron-doped multiwalled carbon nanotubes. Physical Review B, 2018, 97, .	1.1	7
22	Carbon nanotube sponges as tunable materials for electromagnetic applications. Nanotechnology, 2018, 29, 375202.	1.3	7
23	Short-length carbon nanotubes as building blocks for high dielectric constant materials in the terahertz range. Journal Physics D: Applied Physics, 2017, 50, 08LT01.	1.3	14
24	Tunable electromagnetic response of free-standing 3D carbon nanotube network in the Ka-band. , 2017, , ,		0
25	Optical selection rules of zigzag graphene nanoribbons. Physical Review B, 2017, 95, .	1.1	44
26	Observation of the microwave near-field enhancement effect in suspensions comprising single-walled carbon nanotubes. Materials Research Express, 2017, 4, 075033.	0.8	9
27	Integral equation technique for scatterers with mesoscopic insertions: Application to a carbon nanotube. Physical Review B, 2017, 96, .	1.1	8
28	Plasmonic carbon interconnects to enable the THz technology: Properties and limits. , 2017, , .		0
29	Comparison of the electrical conductivity of polymer composites in the microwave and terahertz frequency ranges. , 2017, , .		2
30	Enhanced electromagnetic response of ultrathin carbon films in thz frequency range. , 2017, , .		0
31	Bridging between integral equation technique of classical electrodynamics and landauer-buttiker formalism for quantum transport. , 2017, , .		0
32	Temperature induced modification of the mid-infrared response of single-walled carbon nanotubes. Journal of Applied Physics, 2016, 119, .	1.1	9
33	Splitting of absorptance peaks in absorbing multilayer backed by a periodically corrugated metallic reflector. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 2016, 33, 779.	0.8	7
34	Planar Light Concentration in Micro-Si Solar Cells Enabled by a Metallic Grating–Photonic Crystal Architecture. ACS Photonics, 2016, 3, 604-610.	3.2	23
35	Shielding effects in thin films of carbon nanotubes within microwave range. Lithuanian Journal of Physics, 2016, 56, .	0.1	1

Challenges and Perspectives of Nanoelectromagnetics in the THz Range. , 2015, , .

0

М V Ѕнива

#	Article	IF	CITATIONS
37	Antenna resonances in carbon nanotubes: Theoretical model and experimental verification. , 2015, , .		0
38	Adequacy of the rigorous coupled-wave approach for thin-film silicon solar cells with periodically corrugated metallic backreflectors: spectral analysis. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 2015, 32, 1222.	0.8	13
39	Study of nanometric thin pyrolytic carbon films for explosive electron emission cathode in high-voltage planar diode. Thin Solid Films, 2015, 581, 107-111.	0.8	9
40	Electrical Transport and Magnetoresistance in Single-Wall Carbon Nanotubes Films. Medziagotyra, 2014, 20, .	0.1	3
41	Role of finite-size effects in the microwave and subterahertz electromagnetic response of a multiwall carbon-nanotube-based composite: Theory and interpretation of experiments. Physical Review B, 2013, 88, .	1.1	51
42	Influence of carbon-nanotube diameters on composite dielectric properties. Physica Status Solidi (A) Applications and Materials Science, 2013, 210, 2491-2498.	0.8	19
43	Anisotropic electromagnetic properties of polymer composites containing oriented multiwall carbon nanotubes in respect to terahertz polarizer applications. Journal of Applied Physics, 2013, 114, .	1.1	42
44	Electrical conductivity of single-wall carbon nanotube films in strong electric field. Journal of Applied Physics, 2013, 113, 183719.	1.1	2
45	Finite-size effects in the optical properties of single walled carbon nanotube films. , 2013, , .		0
46	Single walled carbon nanotubes films: Strong electric field induced nonlinear effects in electrical conductivity. , 2013, , .		0
47	ELECTROMAGNETIC RESPONSE OF FINITE-LENGTH MULTIWALL CARBON NANOTUBES IN SUB-TERAHERTZ RANGE. , 2013, , .		0
48	Soft cutting of single-wall carbon nanotubes by low temperature ultrasonication in a mixture of sulfuric and nitric acids. Nanotechnology, 2012, 23, 495714.	1.3	43
49	Terahertz time domain spectroscopy of epoxy resin composite with various carbon inclusions. Chemical Physics, 2012, 404, 129-135.	0.9	22
50	Electromagnetic shielding efficiency in Ka-band: carbon foam versus epoxy/carbon nanotube composites. Journal of Nanophotonics, 2012, 6, 061715.	0.4	60
51	Effects of inclusion dimensions and p-type doping in the terahertz spectra of composite materials containing bundles of single-wall carbon nanotubes. Journal of Nanophotonics, 2012, 6, 061707.	0.4	15
52	The Effect of Sample Holder Geometry on Electromagnetic Heating of Nanoparticle and NaCl Solutions at 13.56 MHz. IEEE Transactions on Biomedical Engineering, 2012, 59, 3468-3474.	2.5	22
53	Antenna resonances in terahertz photoconductivity of single wall carbon nanotube fibers. Diamond and Related Materials, 2012, 27-28, 36-39.	1.8	6
54	Experimental evidence of localized plasmon resonance in composite materials containing single-wall carbon nanotubes. Physical Review B, 2012, 85, .	1.1	105

Μ V Shuba

#	Article	IF	CITATIONS
55	Effective conductivity of a composite material containing carbon nanotubes in the GHz and THz frequency ranges. , 2011, , .		0
56	Epoxy — Nano-carbon shielding coating for super-high-frequency range. , 2011, , .		0
57	Anisotropy of the electromagnetic properties of polymer composites based on multiwall carbon nanotubes in the gigahertz frequency range. JETP Letters, 2011, 93, 607-611.	0.4	27
58	Terahertz and sub-terahertz responses of finite-length multiwall carbon nanotubes. , 2011, , .		0
59	Microwave probing of nanocarbon based epoxy resin composite films: Toward electromagnetic shielding. Thin Solid Films, 2011, 519, 4114-4118.	0.8	80
60	ENHANCEMENT OF THE INFRARED ABSORPTION BY BIOMOLECULES ADSORBED ON SINGLE WALL CARBON NANOTUBES. , 2011, , .		2
61	CNT Based Epoxy Resin Composites for Conductive Applications. Nanoscience and Nanotechnology Letters, 2011, 3, 889-894.	0.4	15
62	RF and Microwave Electrical Response of Carbon Nanotube Saline Solutions for Potential Biomedical Applications. Nanoscience and Nanotechnology Letters, 2011, 3, 885-888.	0.4	8
63	Electromagnetic response of the composites containing chemically modified carbon nanotubes. Journal of Physics: Conference Series, 2010, 248, 012003.	0.3	2
64	Terahertz conductivity peak in composite materials containing carbon nanotubes: Theory and interpretation of experiment. Physical Review B, 2010, 81, .	1.1	125
65	Radiofrequency field absorption by carbon nanotubes embedded in a conductive host. Journal of Applied Physics, 2010, 108, .	1.1	40
66	Substitutional doping of carbon nanotubes to control their electromagnetic characteristics. Physical Review B, 2010, 82, .	1.1	35
67	Terahertz sensing with carbon nanotube layers coated on silica fibers: Carrier transport versus nanoantenna effects. Applied Physics Letters, 2010, 97, 073116.	1.5	10
68	Effectiveness of microwave electromagnetic shielding in carbon based epoxy nanocomposites. , 2010, ,		0
69	Electromagnetic properties of composite materials containing carbon nanotubes. , 2010, , .		0
70	Theory of multiwall carbon nanotubes as waveguides and antennas in the infrared and the visible regimes. Physical Review B, 2009, 79, .	1.1	103
71	Absorption Cross-Section and Near-Field Enhancement in Finite-Length Carbon Nanotubes in the Terahertz-to-Optical Range. Journal of Computational and Theoretical Nanoscience, 2009, 6, 2016-2023.	0.4	15
72	Carbon nanotube antenna: Far-field, near-field and thermal-noise properties. Physica E: Low-Dimensional Systems and Nanostructures, 2008, 40, 2360-2364.	1.3	37

М V Ѕнива

#	Article	IF	CITATIONS
73	Electromagnetic theory of nanodimensional antennas for terahertz, infrared and optical regimes. , 2008, , .		5
74	Electromagnetic wave propagation in an almost circular bundle of closely packed metallic carbon nanotubes. Physical Review B, 2007, 76, .	1.1	77
75	LOW FREQUENCY SURFACE WAVES IN CARBON NANOTUBE BUNDLES. , 2007, , .		0
76	Theory of optical scattering by achiral carbon nanotubes and their potential as optical nanoantennas. Physical Review B, 2006, 73, .	1.1	178
77	Optical scattering by achiral carbon nanotubes and application as nanoantennas and composite mediums. , 2006, , .		0
78	<title>Peculiarities of laser beam transformation in three-layered periodic structure at arbitrary light incidence</title> . , 2004, , .		1
79	Specific features of light propagation in a periodic structure with regular arrangement of defect layers. Optics and Spectroscopy (English Translation of Optika I Spektroskopiya), 2003, 94, 418-422.	0.2	1
80	Enhancement of magneto-optical kerr rotation by magnetoactive dielectric structures. Crystallography Reports, 2003, 48, 504-508.	0.1	0
81	Intermediate regime for the diffraction of light by ultrasound in cubic crystals with electrically induced anisotropy. Journal of Optical Technology (A Translation of Opticheskii Zhurnal), 2003, 70, 408.	0.2	1
82	Bistability of acousto-optic interaction in gyrotropic crystals with electro-induced anisotropy. , 2002, 4750, 294.		0
83	Nonreciprocal effects in the acousto-optical interaction in gyrotropic cubic crystals with electroinduced anisotropy. Optics and Spectroscopy (English Translation of Optika I Spektroskopiya), 2002, 92, 263-266.	0.2	0
84	Specific features of light propagation in periodic structures with natural and electric-field-induced anisotropy. Optics and Spectroscopy (English Translation of Optika I Spektroskopiya), 2002, 93, 908-912.	0.2	2
85	Propagation and transformation of light waves in magnetically active periodic structures. Optics and Spectroscopy (English Translation of Optika I Spektroskopiya), 2002, 93, 913-917.	0.2	1
86	Enhancement of the Faraday rotation in magnetically active periodic structures with defects. Optics and Spectroscopy (English Translation of Optika I Spektroskopiya), 2002, 93, 918-922.	0.2	9
87	Electrical properties and transmembrane ionic current of single smooth muscle cells. Bulletin of Experimental Biology and Medicine, 1986, 101, 259-263.	0.3	1