Lianzheng Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9492624/publications.pdf

Version: 2024-02-01

293460 388640 1,702 75 24 36 citations g-index h-index papers 75 75 75 592 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Efficient extraction and theoretical insights for separating ⟨i⟩o⟨ i⟩â€; ⟨i⟩m⟨ i⟩â€; and ⟨i⟩p⟨ i⟩â€cresol from model coal tar by an ionic liquid [⟨scp⟩Emim⟨ scp⟩][⟨scp⟩DCA⟨ scp⟩]. Canadian Journal of Chemical Engineering, 2022, 100, .	0.9	9
2	Multiscale evaluation of the efficiently separation of phenols using a designed cationic functionalized ionic liquid based on Brønsted/Lewis coordination. Journal of Molecular Liquids, 2022, 345, 117901.	2.3	12
3	Liquid-liquid phase behavior for waterÂ+Â2,2-difluoroethanol with three imidazole-based ionic liquids. Journal of Molecular Liquids, 2022, 345, 117836.	2.3	10
4	Isobaric vapour-liquid equilibrium for binary and ternary systems of isopropyl acetate, isopropyl alcohol, acetic acid and water at 101.3ÂkPa. Journal of Chemical Thermodynamics, 2022, 165, 106662.	1.0	5
5	Molecular mechanism and extraction explorations for separation of pyridine from coal pyrolysis model mixture using protic ionic liquid [Hnmp][HSO4]. Fuel, 2022, 309, 122130.	3.4	12
6	Extraction and interaction insights for enhanced separation of phenolic compounds from model coal tar using a hydroxyl-functionalized ionic liquid. Chemical Engineering Research and Design, 2022, 178, 567-574.	2.7	17
7	Liquid-liquid extraction and mechanism exploration for separation of mixture 2,2,3,3-Tetrafluoro-1-propanol and water using pyridine-based ionic liquids. Journal of Molecular Liquids, 2022, 360, 119468.	2.3	7
8	Separation of azeotropic mixture (acetoneÂ+Ân-heptane) by extractive distillation with intermediate and heavy boiling entrainers: Vapour-liquid equilibrium measurements and correlation. Journal of Chemical Thermodynamics, 2021, 152, 106284.	1.0	21
9	Liquid-liquid equilibrium measurements and interaction explorations for separation of azeotrope n-butyl acetate and n-butanol using three ionic liquids. Journal of Chemical Thermodynamics, 2021, 155, 106349.	1.0	26
10	ZIF-8-porous ionic liquids for the extraction of 2,2,3,3-tetrafluoro-1-propanol and water mixture. New Journal of Chemistry, 2021, 45, 8557-8562.	1.4	9
11	Liquid–Liquid Equilibrium for Ternary Systems (Ethyl Acetate/Isopropyl Acetate + 2,2-Difluoroethanol) Tj ETQq1 i	1 _{1.0} 78431	4 rgBT /Ove
12	Extraction performance evaluation and theoretical analysis of removal of phenol from oil mixture using a dualâ€functionalized ionic liquid: 1â€hydroxyethylâ€3â€methylimidazolium propionate. Journal of Chemical Technology and Biotechnology, 2021, 96, 1947-1953.	1.6	10
13	Explorations of Liquid–Liquid Phase Equilibrium for the Mixture (Isopropanol + Water) with Pyridinium-Based Ionic Liquids. Journal of Chemical & Engineering Data, 2021, 66, 2192-2199.	1.0	10
14	Extraction and multi-scale mechanism explorations for separating indole from coal tar via tetramethylguanidine-based ionic liquids. Journal of Environmental Chemical Engineering, 2021, 9, 105255.	3.3	14
15	Comprehensive evaluation of the role of phenolate based ionic liquid on extracting pyrrole from diverse sources: A combined molecular dynamics simulation study and experiment validation. Journal of Molecular Liquids, 2021, 334, 116525.	2.3	7
16	Process design, evaluation and control for separation of 2,2,3,3â€tetrafluoroâ€1â€propanol and water by extractive distillation using ionic liquid 1â€ethylâ€3â€methylimidazolium acetate. Journal of Chemical Technology and Biotechnology, 2021, 96, 3175-3184.	1.6	6
17	Extraction desulphurization of fuels using ZIF-8-based porous liquid. Fuel, 2021, 300, 121013.	3.4	36
18	Separation of indole by designed ionic liquids with dual functional chemical sites: Mechanism exploration and experimental validation. Journal of Environmental Chemical Engineering, 2021, 9, 105971.	3.3	6

#	Article	IF	CITATIONS
19	Intermolecular Interaction and Extraction Explorations for Separation of High-Boiling Neutral Nitrogen Compounds Using Biodegradable Ionic Liquids. ACS Sustainable Chemistry and Engineering, 2021, 9, 15839-15848.	3.2	14
20	Separation of the Azeotropic Mixture Methanol and Toluene Using Extractive Distillation: Entrainer Determination, Vapor–Liquid Equilibrium Measurement, and Modeling. ACS Omega, 2021, 6, 34736-34743.	1.6	10
21	Performance of functionalized ionic liquid with double chemical sites for separating phenolic compounds: mechanism and liquid-liquid behavior studies. Journal of Environmental Chemical Engineering, 2021, 9, 106790.	3.3	11
22	Liquid-liquid equilibrium measurements and interaction exploration for separation of isobutyl alcoholâ \in +â \in isobutyl acetate by imidazolium-based ionic liquids with different anions. Journal of Chemical Thermodynamics, 2020, 141, 105932.	1.0	22
23	Vapor–Liquid Equilibrium Study of Binary Mixtures of Chloroform, 2-Ethylhexanoic Acid, and Propylene Glycol Methyl Ether at Atmospheric Pressure. Journal of Chemical & Engineering Data, 2020, 65, 2271-2279.	1.0	5
24	Separation of cresol from coal tar by imidazolium-based ionic liquid [Emim][SCN]: Interaction exploration and extraction experiment. Fuel, 2020, 264, 116908.	3.4	58
25	Liquid–Liquid Equilibrium for Ternary Mixture Water + (n-Propanol/Isopropanol) + Cyclohexanone at 298.15 and 308.15 K. Journal of Chemical & Engineering Data, 2020, 65, 233-238.	1.0	13
26	Separation of azeotrope 2,2,3,3-tetrafluoro-1-propanol and water: Liquid-liquid equilibrium measurements and interaction exploration. Journal of Chemical Thermodynamics, 2020, 142, 106011.	1.0	18
27	Separation of azeotropic mixture isopropyl alcoholÂ+ ethyl acetate by extractive distillation: Vapor-liquid equilibrium measurements and interaction exploration. Fluid Phase Equilibria, 2020, 507, 112428.	1.4	17
28	Thermal coupled extractive distillation sequences with three entrainers for the separation of azeotrope isopropyl alcohol + diisopropyl ether. Journal of Chemical Technology and Biotechnology, 2020, 95, 1590-1603.	1.6	11
29	Separation of isopropanol from its aqueous solution with deep eutectic solvents: liquid–liquid equilibrium measurement and thermodynamic modeling. Brazilian Journal of Chemical Engineering, 2020, 37, 569-576.	0.7	13
30	Separation of <i>m</i> -Cresol from Coal Tar Model Oil Using Propylamine-Based Ionic Liquids: Extraction and Interaction Mechanism Exploration. ACS Omega, 2020, 5, 23090-23098.	1.6	21
31	Isobaric Vapor–Liquid Equilibrium of Binary Systems (Isopropyl Acetate/Isopropyl Alcohol + Dibutyl) Tj ETQq	l 1 0.78431	4 rgBT /Over
32	Multiscale Exploration and Experimental Insights into Separating Neutral Heterocyclic Nitrogen Compounds Using [emim] [NO ₃] as an Extractant. ACS Sustainable Chemistry and Engineering, 2020, 8, 5662-5673.	3.2	42
33	Vapour-liquid equilibrium measurements and correlation for separating azeotropic mixture (ethyl) Tj ETQq1 1 (0.784314 rg	BT/Overlock
34	Entrainers selection and vapour-liquid equilibrium measurements for separating azeotropic mixtures (ethanolÂ+Ân-hexane/cyclohexane) by extractive distillation. Journal of Chemical Thermodynamics, 2020, 144, 106070.	1.0	17
35	Entrainers selection and vapour-liquid equilibrium measurements for isopropyl acetate with propyl propionate, butyl propionate, and butyl butyrate at 101.3ÂkPa. Journal of Chemical Thermodynamics, 2020, 146, 106107.	1.0	4
36	Extraction and mechanism exploration for separating cresols from coal tar by ionic liquid ethanolamine lactate. Journal of Molecular Liquids, 2020, 305, 112845.	2.3	29

#	Article	IF	CITATIONS
37	Efficient extraction of phenol from low-temperature coal tar model oil via imidazolium-based ionic liquid and mechanism analysis. Journal of Molecular Liquids, 2020, 306, 112911.	2.3	41
38	Separation of azeotrope 2,2,3,3-tetrafluoro-1-propanol and water by extractive distillation using ionic liquids: Vapor-liquid equilibrium measurements and interaction analysis. Journal of Molecular Liquids, 2019, 292, 111424.	2.3	25
39	Liquid–Liquid Equilibrium Measurements and Correlation for Ternary Systems (Butyl Acetate +) Tj ETQq1 1 0.78 Engineering Data, 2019, 64, 3244-3249.	4314 rgB1 1.0	Γ/Overlock 14
40	Measurement and Correlation of Vapor–Liquid Equilibrium for Binary Systems of Dimethyl Carbonate with Butyl Butyrate, o-Xylene, and Cyclohexanone at 101.3 kPa. Journal of Chemical & Engineering Data, 2019, 64, 5210-5217.	1.0	7
41	Liquid–Liquid Equilibrium of Isobutyl Acetate + Isobutyl Alcohol + Imidazolium-Based Ionic Liquids at 298.15 and 308.15 K. Journal of Chemical & Engineering Data, 2019, 64, 778-783.	1.0	23
42	Multiscale modeling and liquid-liquid equilibria insights for the extraction of heterocyclic nitrogen compounds from coal tar via [emim][TOS] as extractant. Journal of Molecular Liquids, 2019, 277, 825-832.	2.3	35
43	Deep eutectic solvents effect on vapor-liquid phase equilibrium for separation of allyl alcohol from its aqueous solution. Journal of Molecular Liquids, 2019, 279, 524-529.	2.3	24
44	Liquid–Liquid Equilibrium for Ternary Systems of <i>N</i> Methylformamide + Pyrrole/Indole + Alkanes at 298.15 K: Phase Equilibrium Measurement and Correlation. Journal of Chemical & Engineering Data, 2019, 64, 3085-3091.	1.0	8
45	Vapor–Liquid Phase Equilibrium for Separation of Isopropanol from Its Aqueous Solution by Choline Chloride-Based Deep Eutectic Solvent Selected by COSMO-SAC Model. Journal of Chemical & Camp; Engineering Data, 2019, 64, 1338-1348.	1.0	22
46	Separation of the mixture (isopropyl alcoholâ€+†diisopropyl ether†+†n-propanol): Entrainer selection, interaction exploration and vapour-liquid equilibrium measurements. Journal of Chemical Thermodynamics, 2019, 135, 27-34.	1.0	16
47	Liquid-liquid measurement and correlation for separation of azeotrope (dimethyl carbonate and) Tj ETQq $1\ 1\ 0.784$	1314 rgBT 1.4	/Qyerlock 1
48	Choline chloride based deep eutectic solvents selection and liquid-liquid equilibrium for separation of dimethyl carbonate and ethanol. Journal of Molecular Liquids, 2019, 275, 347-353.	2.3	58
49	Vapour–liquid equilibrium and extractive distillation for separation of azeotrope isopropyl alcohol and diisopropyl ether. Journal of Chemical Thermodynamics, 2019, 131, 294-302.	1.0	26
50	Separation of heterocyclic nitrogen compounds from coal tar fractions via ionic liquids: COSMO-SAC screening and experimental study. Chemical Engineering Communications, 2019, 206, 1199-1217.	1.5	34
51	Isobaric Vapor–Liquid Phase Equilibrium Measurements for Allyl Alcohol with Chloroform, Ethyl Acetate, and Methyl Propionate at 101.3 kPa. Journal of Chemical & Engineering Data, 2019, 64, 682-687.	1.0	6
52	Isobaric Vapor–Liquid Equilibrium Measurements for Separation of Azeotrope (Methanol + Methyl) Tj ETQq0 0 () rgBT /Ov	egock 10 Tf
53	MEASUREMENTS AND THERMODYNAMIC MODELING OF VAPOR-LIQUID EQUILIBRIA FOR BINARY SYSTEMS OF ISOPROPYL CHLOROACETATE WITH CYCLOHEXANE, ISOPROPANOL AND BENZENE AT 101.3 kPa. Brazilian Journal of Chemical Engineering, 2019, 36, 1717-1725.	0.7	O
54	Separation of Dimethyl Carbonate and Methanol by Deep Eutectic Solvents: Liquid–Liquid Equilibrium Measurements and Thermodynamic Modeling. Journal of Chemical & Engineering Data, 2018, 63, 1234-1239.	1.0	34

#	Article	IF	CITATIONS
55	Separation of azeotrope (ethanol and ethyl methyl carbonate) by different imidazolium-based ionic liquids: lonic liquids interaction analysis and phase equilibrium measurements. Journal of Molecular Liquids, 2018, 261, 89-95.	2.3	70
56	Separation of thioglycolic acid from its aqueous solution by ionic liquids: Ionic liquids selection by the COSMO-SAC model and liquid-liquid phase equilibrium. Journal of Chemical Thermodynamics, 2018, 118, 263-273.	1.0	76
57	Separation of azeotrope (allyl alcoholâ€+â€water): Isobaric vapour-liquid phase equilibrium measurements and extractive distillation. Journal of Chemical Thermodynamics, 2018, 118, 139-146.	1.0	48
58	Liquid-liquid equilibrium measurement and thermodynamics modeling for the systems waterÂ+thioglycolic acidÂ+ isopropyl ether/methyl tert-butyl ether at 298.15 and 308.15ÂK. Fluid Phase Equilibria, 2018, 476, 126-130.	1.4	10
59	Efficient Extraction of Neutral Heterocyclic Nitrogen Compounds from Coal Tar via Ionic Liquids and Its Mechanism Analysis. Energy & Energy & 2018, 32, 9358-9370.	2.5	48
60	Measurement and Modeling of Liquid–Liquid Equilibrium for the Systems Vinyl Acetate + Acetic Acid/Ethanol + Water at 298.15 and 308.15 K. Journal of Chemical & Engineering Data, 2017, 62, 1240-1246.	1.0	26
61	Measurement and Correlation of Phase Equilibria for Isobutyl Acetate + {Ethanol or Methanol} + Water at 303.15 and 323.15 K. Journal of Chemical & Engineering Data, 2017, 62, 1587-1593.	1.0	9
62	Measurement and thermodynamic modelling of ternary liquid-liquid equilibrium for extraction of thioglycolic acid from aqueous solution with different solvents. Journal of Chemical Thermodynamics, 2017, 113, 229-235.	1.0	34
63	Isobaric Vapor–Liquid Equilibrium for Binary Systems of Cyclohexanone + Benzene, Cyclohexanone + Toluene, and Cyclohexanone + <i>p</i> >Xylene at 101.3 kPa. Journal of Chemical & Engineering Data, 2017, 62, 1948-1954.	1.0	16
64	Separation of the mixture pyridine + methylbenzene via several acidic ionic liquids: Phase equilibrium measurement and correlation. Fluid Phase Equilibria, 2017, 440, 103-110.	1.4	45
65	Liquid-liquid equilibrium for ternary systems of ethyl acetate/isopropyl acetate+2,2,3,3-tetrafluoro-1-propanol+water at 298.15, 318.15K. Journal of Chemical Thermodynamics, 2017, 106, 218-227.	1.0	51
66	Isobaric Vapor–Liquid Equilibrium for Binary Systems of Thioglycolic Acid with Water, Butyl Acetate, Butyl Formate, and Isobutyl Acetate at 101.3 kPa. Journal of Chemical & Degineering Data, 2017, 62, 355-361.	1.0	29
67	Extraction and mechanism for the separation of neutral N -compounds from coal tar by ionic liquids. Fuel, 2017, 194, 27-35.	3.4	88
68	Solubility Determination and Thermodynamic Modeling of Sodium Thioglycolate in Pure and Binary Solvent Mixtures from $\langle i \rangle T \langle i \rangle = (293.15 \text{ to } 333.15) \text{ K. Journal of Chemical & Data, 2017, } 62, 3105-3123.$	1.0	6
69	Measurements and correlations of density, viscosity, and vapour-liquid equilibrium for fluoro alcohols. Journal of Chemical Thermodynamics, 2016, 102, 155-163.	1.0	22
70	Isobaric Vapor–Liquid Equilibrium for Binary Systems of Allyl Alcohol with Water, Methanol, and Ethanol at 101.3 kPa. Journal of Chemical & Engineering Data, 2016, 61, 2071-2077.	1.0	22
71	Measurement and correlation of phase equilibria for ternary systems of waterÂ+Â(ethanol/1-propanol)Â+Â1-decyl-3-methylimidazolium bis(trifluoromethylsulfonyl) imide at 298.15ÂK. Fluid Phase Equilibria, 2016, 427, 340-344.	1.4	38

Liquid–Liquid Equilibrium for the Ternary System Isopropyl Acetate + Ethanol + Water at (293.15, 313.15,) Tj ETQq0 0 0 rgBT /Overloo

#	Article	IF	CITATIONS
73	Isobaric Vapor–Liquid Equilibrium for Binary Systems of 2,2,3,3-Tetrafluoro-1-propanol + 2,2,3,3,4,4,5,5-Octafluoro-1-pentanol at 53.3, 66.7, 80.0 kPa. Journal of Chemical & Engineering Data, 2016, 61, 3371-3376.	1.0	34
74	Measurement and correlation of liquid–liquid equilibrium for the ternary system 2,2,3,3,4,4,5,5-octafluoro-1-pentanolÂ+ methanolÂ+Âwater at (298.15, 308.15, and 318.15) K. Fluid Phase Equilibria, 2016, 409, 377-382.	1.4	21
75	Liquid–Liquid Equilibrium for the Ternary System 2,2,3,3,4,4,5,5-Octafluoro-1-pentanol + Ethanol + Water at (298.15, 308.15, and 318.15) K. Journal of Chemical & Engineering Data, 2015, 60, 2733-2738.	1.0	23