Libing Liu

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/9492529/libing-liu-publications-by-year.pdf

Version: 2024-04-19

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

194 8,701 45 89 g-index

205 10,057 10.4 6.39 ext. papers ext. citations avg, IF L-index

#	Paper	IF	Citations
194	Sensitive Detection and Conjoint Analysis of Promoter Methylation by Conjugated Polymers for Differential Diagnosis and Prognosis of Glioma. <i>ACS Applied Materials & Discounty (Materials & Discounty)</i> 13, 9291-9	9299	6
193	3D Bioprinting of Reinforced Vessels by Dual-Cross-linked Biocompatible Hydrogels <i>ACS Applied Bio Materials</i> , 2021 , 4, 4549-4556	4.1	2
192	Oral delivery of antioxidant enzymes for effective treatment of inflammatory disease. <i>Biomaterials</i> , 2021 , 271, 120753	15.6	9
191	3D Bioprinting of Polythiophene Materials for Promoting Stem Cell Proliferation in a Nutritionally Deficient Environment. <i>ACS Applied Materials & Deficient Environment</i> . <i>ACS Applied Materials & Deficient Environment</i> .	9.5	1
190	Near-Infrared-Light Remote-Controlled Activation of Cancer Immunotherapy Using Photothermal Conjugated Polymer Nanoparticles. <i>Advanced Materials</i> , 2021 , 33, e2102570	24	15
189	Photocontrolled RAFT Polymerization Catalyzed by Conjugated Polymers under Aerobic Aqueous Conditions <i>ACS Macro Letters</i> , 2021 , 10, 996-1001	6.6	3
188	Oligo(p-phenylenevinylene)-rhodium complex as intracellular catalyst for enhancing biosynthesis of polyhydroxybutyrate biomaterials. <i>Science China Chemistry</i> , 2021 , 64, 143-150	7.9	O
187	Fluorescence Imaging of Mammalian Cells with Cationic Conjugated Polyelectrolytes. <i>ChemPhotoChem</i> , 2021 , 5, 123-130	3.3	1
186	Removal of phenolic contaminants from water by in situ coated surfactant on Keggin-aluminum nanocluster and biodegradation. <i>Chemosphere</i> , 2021 , 269, 128692	8.4	12
185	Design and application of metal-organic frameworks and derivatives as heterogeneous Fenton-like catalysts for organic wastewater treatment: A review. <i>Environment International</i> , 2021 , 146, 106273	12.9	46
184	Photoactive Conjugated Polymer-Based Hybrid Biosystems for Enhancing Cyanobacterial Photosynthesis and Regulating Redox State of Protein. <i>Advanced Functional Materials</i> , 2021 , 31, 200781	1 ^{45.6}	10
183	In Situ Synthesis of Photoactive Polymers on a Living Cell Surface via Bio-Palladium Catalysis for Modulating Biological Functions. <i>Angewandte Chemie - International Edition</i> , 2021 , 60, 5759-5765	16.4	20
182	In Situ Synthesis of Photoactive Polymers on a Living Cell Surface via Bio-Palladium Catalysis for Modulating Biological Functions. <i>Angewandte Chemie</i> , 2021 , 133, 5823-5829	3.6	5
181	Polymer nanoparticles regulate macrophage repolarization for antitumor treatment. <i>Chemical Communications</i> , 2021 , 57, 6919-6922	5.8	4
180	Photoactive conjugated polymer/graphdiyne nanocatalyst for CO2 reduction to CO in living cells for hypoxia tumor treatment. <i>Materials Chemistry Frontiers</i> , 2021 , 5, 5841-5845	7.8	5
179	Living Bacteria-Mediated Aerobic Photoinduced Radical Polymerization for in Situ Bacterial Encapsulation and Differentiation. <i>CCS Chemistry</i> , 2021 , 3, 1296-1305	7.2	10
178	Supramolecular Regulation of Catalytic Activity for an Amphiphilic Pyrene-Ruthenium Complex in Water. <i>Chemistry - A European Journal</i> , 2021 , 27, 11567-11573	4.8	O

177	Pre-aggregation of Al in optimizing coagulation for removal of humic acid. <i>Chemosphere</i> , 2021 , 277, 13	02868	10
176	Intracellular Radical Polymerization of Paclitaxel-Bearing Acrylamide for Self-Inflicted Apoptosis of Cancer Cells 2021 , 3, 1307-1314		6
175	Clickable amino acid derivative tuned self-assembly of antigen and adjuvant for cancer immunotherapy. <i>Journal of Controlled Release</i> , 2021 , 337, 306-316	11.7	0
174	Deprotonation and aggregation of Al under alkaline titration: A simulating study related to coagulation process. <i>Water Research</i> , 2021 , 203, 117562	12.5	2
173	Formation of Al aggregates and its correlation to the coagulation effect. <i>Chemosphere</i> , 2021 , 278, 1304	19334	3
172	3D printing of artificial skin patches with bioactive and optically active polymer materials for anti-infection and augmenting wound repair. <i>Materials Horizons</i> , 2021 ,	14.4	7
171	Biohybrid Conjugated Polymer Materials for Augmenting Energy Conversion of Bioelectrochemical Systems. <i>Chemistry - A European Journal</i> , 2020 , 26, 15065-15073	4.8	2
170	Wireless Charging Electrochemiluminescence System for Ionic Channel Manipulation in Living Cells. <i>ACS Applied Materials & District ACS ACS ACS ACS ACS ACS ACS ACS ACS ACS</i>	9.5	2
169	Cyclometalated iridium(iii) complex nanoparticles for mitochondria-targeted photodynamic therapy. <i>Nanoscale</i> , 2020 , 12, 14061-14067	7.7	15
168	Conjugated Polymer Nanomaterials for Phototherapy of Cancer. <i>Chemical Research in Chinese Universities</i> , 2020 , 36, 237-242	2.2	17
167	In situ self-assembly of conjugated polyelectrolytes for cancer targeted imaging and photodynamic therapy. <i>Biomaterials Science</i> , 2020 , 8, 2156-2163	7.4	16
166	Solar-Powered Organic Semiconductor B acteria Biohybrids for CO2 Reduction into Acetic Acid. <i>Angewandte Chemie</i> , 2020 , 132, 7291-7296	3.6	4
165	Solar-Powered Organic Semiconductor-Bacteria Biohybrids for CO Reduction into Acetic Acid. <i>Angewandte Chemie - International Edition</i> , 2020 , 59, 7224-7229	16.4	42
164	Fluorescent and Biocompatible Ruthenium-Coordinated Oligo(p-phenylenevinylene) Nanocatalysts for Transfer Hydrogenation in the Mitochondria of Living Cells. <i>Chemistry - A European Journal</i> , 2020 , 26, 4489-4495	4.8	6
163	Integration of Self-Luminescence and Oxygen Self-Supply: A Potential Photodynamic Therapy Strategy for Deep Tumor Treatment. <i>ChemPlusChem</i> , 2020 , 85, 510-518	2.8	9
162	Conjoint Analysis of DNA Methylation for Tumor Differentiation Using Cationic Conjugated Polymers ACS Applied Bio Materials, 2020 , 3, 2867-2872	4.1	1
161	Cationic conjugated polymers for enhancing beneficial bacteria adhesion and biofilm formation in gut microbiota. <i>Colloids and Surfaces B: Biointerfaces</i> , 2020 , 188, 110815	6	5
160	FEster Resonance Energy Transfer Mediated Rapid and Synergistic Discrimination of Bacteria over Fungi Using a Cationic Conjugated Glycopolymer <i>ACS Applied Bio Materials</i> , 2020 , 3, 20-28	4.1	8

159	Conjugated polymer nanoparticles as fluorescence switch for selective cell imaging. <i>Chinese Chemical Letters</i> , 2020 , 31, 755-758	8.1	3
158	Photoactive Oligo(-phenylene vinylene) Material for Functional Regulation of Induced Pluripotent Stem Cells. <i>ACS Applied Materials & Discourse (Materials & Discourse)</i> 12, 3438-3444	9.5	
157	Bacteriorhodopsin-Based Biophotovoltaic Devices Driven by Chemiluminescence as Endogenous Light Source. <i>Advanced Optical Materials</i> , 2020 , 8, 1901551	8.1	5
156	Supramolecular Nanofibers for Encapsulation and In Situ Differentiation of Neural Stem Cells. <i>Advanced Healthcare Materials</i> , 2020 , 9, e1901295	10.1	7
155	Conjugated Polymer-Quantum Dot Hybrid Materials for Pathogen Discrimination and Disinfection. <i>ACS Applied Materials & Discrimination and Disinfection.</i>	9.5	21
154	Blood-brain-barrier penetrable thiolated paclitaxel-oligo (p-phenylene vinylene) nanomedicine with increased drug efficiency for glioblastoma treatment. <i>Nano Today</i> , 2020 , 35, 100969	17.9	5
153	Optical Tuning of Antibacterial Activity of Photoresponsive Antibiotics <i>ACS Applied Bio Materials</i> , 2020 , 3, 4751-4755	4.1	3
152	Development of A Thermo-Responsive Conjugated Polymer with Photobleaching-Resistance Property and Tunable Photosensitizing Performance. <i>Macromolecular Rapid Communications</i> , 2020 , 41, e2000249	4.8	4
151	Artificial regulation of state transition for augmenting plant photosynthesis using synthetic light-harvesting polymer materials. <i>Science Advances</i> , 2020 , 6, eabc5237	14.3	24
150	Nucleic Acids Analysis. <i>Science China Chemistry</i> , 2020 , 64, 1-33	7.9	33
150 149	Nucleic Acids Analysis. <i>Science China Chemistry</i> , 2020 , 64, 1-33 Crystallization of aluminum polycation sulfates: transformation of tetrahedral crystals into block crystals in aqueous solutions. <i>CrystEngComm</i> , 2019 , 21, 202-206	7.9	33
	Crystallization of aluminum polycation sulfates: transformation of tetrahedral crystals into block		
149	Crystallization of aluminum polycation sulfates: transformation of tetrahedral crystals into block crystals in aqueous solutions. <i>CrystEngComm</i> , 2019 , 21, 202-206 Reactive Conjugated Polymers for the Modulation of Islet Amyloid Polypeptide Assembly. <i>ACS</i>	3.3	2
149	Crystallization of aluminum polycation sulfates: transformation of tetrahedral crystals into block crystals in aqueous solutions. <i>CrystEngComm</i> , 2019 , 21, 202-206 Reactive Conjugated Polymers for the Modulation of Islet Amyloid Polypeptide Assembly. <i>ACS Applied Materials & Description of Materials & Description </i>	3-3 9-5	2 15 14
149 148 147	Crystallization of aluminum polycation sulfates: transformation of tetrahedral crystals into block crystals in aqueous solutions. <i>CrystEngComm</i> , 2019 , 21, 202-206 Reactive Conjugated Polymers for the Modulation of Islet Amyloid Polypeptide Assembly. <i>ACS Applied Materials & Description of Materials & Description of Materials & Description of Materials & Description of Islet Amyloid Polypeptide Assembly. <i>ACS Applied Materials & Description of Ma</i></i>	3·3 9·5 6·4	2 15 14
149 148 147	Crystallization of aluminum polycation sulfates: transformation of tetrahedral crystals into block crystals in aqueous solutions. <i>CrystEngComm</i> , 2019 , 21, 202-206 Reactive Conjugated Polymers for the Modulation of Islet Amyloid Polypeptide Assembly. <i>ACS Applied Materials & Double & </i>	3·3 9·5 6·4	2 15 14 116
149 148 147 146	Crystallization of aluminum polycation sulfates: transformation of tetrahedral crystals into block crystals in aqueous solutions. <i>CrystEngComm</i> , 2019 , 21, 202-206 Reactive Conjugated Polymers for the Modulation of Islet Amyloid Polypeptide Assembly. <i>ACS Applied Materials & Mat</i>	3.3 9.5 6.4 16.4 4.8	2 15 14 116 4

(2018-2019)

141	Boronic Acid-Functionalized Conjugated Polymer for Controllable Cell Membrane Imaging <i>ACS Applied Bio Materials</i> , 2019 , 2, 1787-1791	4.1	7
140	Designing an Amino-Fullerene Derivative C-(EDA) to Fight Superbacteria. <i>ACS Applied Materials</i> & Samp; Interfaces, 2019 , 11, 14597-14607	9.5	23
139	An Optoelectronic Device for Rapid Monitoring of Creatine Kinase Using Cationic Conjugated Polyelectrolyte. <i>Advanced Materials Technologies</i> , 2019 , 4, 1900361	6.8	4
138	Water-Soluble Conjugated Organic Molecules as Optical and Electrochemical Materials for Interdisciplinary Biological Applications. <i>Accounts of Chemical Research</i> , 2019 , 52, 3211-3222	24.3	56
137	Conjugated Polymer Enhanced Photoelectric Response of Self-Circulating Photosynthetic Bioelectrochemical Cell. <i>ACS Applied Materials & Amp; Interfaces</i> , 2019 , 11, 38993-39000	9.5	12
136	Quantum Dots for Monitoring Choline Consumption Process of Living Cells via an Electrostatic Force-Mediated Energy Transfer <i>ACS Applied Bio Materials</i> , 2019 , 2, 5528-5534	4.1	3
135	Conjugated Polymer Nanogel Binding Anticancer Drug through Hydrogen Bonds for Sustainable Drug Delivery <i>ACS Applied Bio Materials</i> , 2019 , 2, 6012-6020	4.1	14
134	Reactive Amphiphilic Conjugated Polymers for Inhibiting Amyloid Assembly. <i>Angewandte Chemie - International Edition</i> , 2019 , 58, 5988-5993	16.4	38
133	Application of Cationic Conjugated Polymer Duter Membrane Vesicle Complexes in Inhibiting Red Blood Cell Aggregation. <i>Organic Materials</i> , 2019 , 01, 038-042	1.9	1
132	Optically-controlled supramolecular self-assembly of an antibiotic for antibacterial regulation. <i>Chemical Communications</i> , 2019 , 55, 14466-14469	5.8	7
131	Antimicrobial activity of a conjugated polymer with cationic backbone. <i>Dyes and Pigments</i> , 2019 , 160, 519-523	4.6	27
130	Conducting Polymers Thylakoid Hybrid Materials for Water Oxidation and Photoelectric Conversion. <i>Advanced Electronic Materials</i> , 2019 , 5, 1800789	6.4	24
129	Efficient purification of Al by organic complexation method. <i>Journal of Environmental Sciences</i> , 2019 , 80, 240-247	6.4	5
128	Supramolecular Strategy Based on Conjugated Polymers for Discrimination of Virus and Pathogens. <i>Biomacromolecules</i> , 2018 , 19, 2117-2122	6.9	23
127	Conjugated Polymer-Based Photoelectrochemical Cytosensor with Turn-On Enable Signal for Sensitive Cell Detection. <i>ACS Applied Materials & Applied</i>	9.5	42
126	Cross-Linking of Thiolated Paclitaxel-Oligo(p-phenylene vinylene) Conjugates Aggregates inside Tumor Cells Leads to "Chemical Locks" That Increase Drug Efficacy. <i>Advanced Materials</i> , 2018 , 30, 1704	8 88	42
125	Electrochemiluminescence for Electric-Driven Antibacterial Therapeutics. <i>Journal of the American Chemical Society</i> , 2018 , 140, 2284-2291	16.4	112
124	Soft Particles of Gemini Surfactant/Conjugated Polymer for Enhanced Anticancer Activity of Chemotherapeutics. ACS Applied Materials & Mate	9.5	17

123	Photothermal-Responsive Conjugated Polymer Nanoparticles for Remote Control of Gene Expression in Living Cells. <i>Advanced Materials</i> , 2018 , 30, 1705418	24	90
122	Strategies to design conjugated polymer based materials for biological sensing and imaging. <i>Coordination Chemistry Reviews</i> , 2018 , 354, 135-154	23.2	65
121	Oligo(-phenylenevinylene) Derivative-Incorporated and Enzyme-Responsive Hybrid Hydrogel for Tumor Cell-Specific Imaging and Activatable Photodynamic Therapy. <i>ACS Biomaterials Science and Engineering</i> , 2018 , 4, 2037-2045	5.5	14
120	Conjugated Polymer Materials for Photothermal Therapy. Advanced Therapeutics, 2018, 1, 1800057	4.9	35
119	Photoelectrochemical Strategy for Discrimination of Microbial Pathogens Using Conjugated Polymers. <i>Chemistry - an Asian Journal</i> , 2018 , 13, 3469-3473	4.5	6
118	Photoactive Oligo(p-phenylenevinylene) Functionalized with Phospholipid Units for Control and Visualization of Delivery into Living Cells. <i>ACS Applied Materials & Delivery Interfaces</i> , 2018 , 10, 27555-27567	1 ^{9.5}	11
117	Design and Synthesis of Reactive Perylene Tetracarboxylic Diimide Derivatives for Rapid Cell Imaging. <i>ACS Omega</i> , 2018 , 3, 8691-8696	3.9	8
116	Conjugated Polymer Nanoparticles with Appended Photo-Responsive Units for Controlled Drug Delivery, Release, and Imaging. <i>Angewandte Chemie</i> , 2018 , 130, 13298-13303	3.6	7
115	Conjugated Polymer Nanoparticles with Appended Photo-Responsive Units for Controlled Drug Delivery, Release, and Imaging. <i>Angewandte Chemie - International Edition</i> , 2018 , 57, 13114-13119	16.4	79
114	Oligo(p-phenyleneethynylene) Derivatives for Mitochondria Targeting in Living Cells through Bioorthogonal Reactions. <i>Chemistry of Materials</i> , 2018 , 30, 5544-5549	9.6	4
113	Design of antibacterial peptide-like conjugated molecule with broad spectrum antimicrobial ability. <i>Science China Chemistry</i> , 2018 , 61, 113-117	7.9	16
112	Self-Assembled Nanomedicines for Anticancer and Antibacterial Applications. <i>Advanced Healthcare Materials</i> , 2018 , 7, e1800670	10.1	45
111	Photothermal-Responsive Conjugated Polymer Nanoparticles for the Rapid and Effective Killing of Bacteria. <i>ACS Applied Bio Materials</i> , 2018 , 1, 27-32	4.1	38
110	Enhanced Photothermal Bactericidal Activity of the Reduced Graphene Oxide Modified by Cationic Water-Soluble Conjugated Polymer. <i>ACS Applied Materials & Distributed Material</i>	9.5	60
109	Supramolecular Conjugated Polymer Systems with Controlled Antibacterial Activity. <i>Langmuir</i> , 2017 , 33, 1116-1120	4	37
108	pH-Responsive Peptide Supramolecular Hydrogels with Antibacterial Activity. <i>Langmuir</i> , 2017 , 33, 3234-	-3 240	64
107	Supramolecular conjugated polymer materials for organelle imaging in living cells. <i>Materials Chemistry Frontiers</i> , 2017 , 1, 1768-1772	7.8	7
106	Biofilm Inhibition and Elimination Regulated by Cationic Conjugated Polymers. <i>ACS Applied Materials & Amp; Interfaces</i> , 2017 , 9, 16933-16938	9.5	53

(2016-2017)

105	Conjugated PolyelectrolyteBilver Nanostructure Pair for Detection and Killing of Bacteria. <i>Advanced Materials Technologies</i> , 2017 , 2, 1700033	6.8	31
104	Conjugated Polymer Nanoparticles to Augment Photosynthesis of Chloroplasts. <i>Angewandte Chemie</i> , 2017 , 129, 5392-5395	3.6	30
103	Conjugated Polymer Nanoparticles to Augment Photosynthesis of Chloroplasts. <i>Angewandte Chemie - International Edition</i> , 2017 , 56, 5308-5311	16.4	86
102	Pyridinium-Substituted TetraphenylethyleneEntailing Alkyne Moiety: Enhancement of Photosensitizing Efficiency and Antimicrobial Activity. <i>Chemistry - an Asian Journal</i> , 2017 , 12, 1013-1019	4 ·5	27
101	Efficient Conjugated Polymer-Methyl Viologen Electron Transfer System for Controlled Photo-Driven Hydrogen Evolution. <i>ACS Applied Materials & Description of the Photo-Driven Hydrogen Evolution Office Evolution Office Evolution Office Evolution Office Evolution Office Evolution Office Evolu</i>	9.5	44
100	Conjugated Polymer with Intrinsic Alkyne Units for Synergistically Enhanced Raman Imaging in Living Cells. <i>Angewandte Chemie</i> , 2017 , 129, 13640-13643	3.6	10
99	Conjugated Polymer with Intrinsic Alkyne Units for Synergistically Enhanced Raman Imaging in Living Cells. <i>Angewandte Chemie - International Edition</i> , 2017 , 56, 13455-13458	16.4	54
98	Tuning Antibacterial Activity of Cyclodextrin-Attached Cationic Ammonium Surfactants by a Supramolecular Approach. <i>ACS Applied Materials & Eamp; Interfaces</i> , 2017 , 9, 31657-31666	9.5	16
97	Supramolecular Germicide Switches through Host-Guest Interactions for Decelerating Emergence of Drug-Resistant Pathogens. <i>ChemistrySelect</i> , 2017 , 2, 7940-7945	1.8	11
96	Selective biocompatibility and responsive imaging property of cationic conjugated polyelectrolyte to cancer cells. <i>Chinese Chemical Letters</i> , 2017 , 28, 1975-1978	8.1	2
95	Polythiophene P eptide Biohybrid Assemblies for Enhancing Photoinduced Hydrogen Evolution. <i>Advanced Electronic Materials</i> , 2017 , 3, 1700161	6.4	15
94	Polarity Conversion of Conjugated Polymer for Lysosome Escaping. <i>ACS Applied Materials & Amp; Interfaces</i> , 2017 , 9, 27427-27432	9.5	7
93	Preparation of Gemini Surfactant/Conjugated Polymer Aggregates for Enhanced Fluorescence and Bioimaging Application. <i>ACS Applied Materials & Description Application ACS Applied Materials & Description Access Acc</i>	9.5	20
92	Graphdiyne Materials as Nanotransducer for in Vivo Photoacoustic Imaging and Photothermal Therapy of Tumor. <i>Chemistry of Materials</i> , 2017 , 29, 6087-6094	9.6	115
91	Cationic conjugated polymers for detection and inactivation of pathogens. <i>Science China Chemistry</i> , 2017 , 60, 1567-1574	7.9	16
90	Supramolecular Conjugated Polymer Materials for in Situ Pathogen Detection. <i>ACS Applied Materials & Amp; Interfaces</i> , 2016 , 8, 31550-31557	9.5	60
89	Fluorescence Visual Detection of Herbal Product Substitutions at Terminal Herbal Markets by CCP-based FRET technique. <i>Scientific Reports</i> , 2016 , 6, 35540	4.9	4
88	Near-Infrared (NIR)-Absorbing Conjugated Polymer Dots as Highly Effective Photothermal Materials for In Vivo Cancer Therapy. <i>Chemistry of Materials</i> , 2016 , 28, 8669-8675	9.6	169

87	Recent Advances in Conjugated Polymer Materials for Disease Diagnosis. <i>Small</i> , 2016 , 12, 696-705	11	60
86	Selective Antimicrobial Activities and Action Mechanism of Micelles Self-Assembled by Cationic Oligomeric Surfactants. <i>ACS Applied Materials & Amp; Interfaces</i> , 2016 , 8, 4242-9	9.5	117
85	Cationic Conjugated Polymers-Induced Quorum Sensing of Bacteria Cells. <i>Analytical Chemistry</i> , 2016 , 88, 2985-8	7.8	35
84	Preparation of Conjugated Polymer Grafted with H2O2-Sensitive Prodrug for Cell Imaging and Tumor Cell Killing. <i>ACS Applied Materials & Samp; Interfaces</i> , 2016 , 8, 42-6	9.5	45
83	Cationic Poly(p-phenylene vinylene) Materials as a Multifunctional Platform for Light-Enhanced siRNA Delivery. <i>Chemistry - an Asian Journal</i> , 2016 , 11, 2686-2689	4.5	15
82	Supramolecular Antibiotic Switches: A Potential Strategy for Combating Drug Resistance. <i>Chemistry - A European Journal</i> , 2016 , 22, 11114-21	4.8	50
81	Preparation of Reactive Oligo(p-Phenylene Vinylene) Materials for Spatial Profiling of the Chemical Reactivity of Intracellular Compartments. <i>Advanced Materials</i> , 2016 , 28, 3749-54	24	13
80	Synthesis of a new cationic non-conjugated polymer for discrimination of microbial pathogens. <i>Polymer Chemistry</i> , 2016 , 7, 6699-6702	4.9	10
79	Multifunctional assembly of micrometer-sized colloids for cell sorting. <i>Small</i> , 2015 , 11, 2555-63	11	11
78	Fluorescence Ratiometric Assay Strategy for Chemical Transmitter of Living Cells Using H2O2-Sensitive Conjugated Polymers. <i>ACS Applied Materials & English Sensitive Conjugated Polymers</i> . <i>ACS Applied Materials & English Sensitive Conjugated Polymers</i> .	9.5	30
77	Protein Detection: An Optical Nanoruler Based on a Conjugated PolymerBilver Nanoprism Pair for Label-Free Protein Detection (Adv. Mater. 39/2015). <i>Advanced Materials</i> , 2015 , 27, 6039-6039	24	2
76	ROS self-scavenging polythiophene materials for cell imaging. <i>Polymer Chemistry</i> , 2015 , 6, 8244-8247	4.9	7
75	Synthesis of a Novel Quinoline Skeleton Introduced Cationic Polyfluorene Derivative for Multimodal Antimicrobial Application. <i>ACS Applied Materials & Design Company of the Property of the Park of the Property of the Prope</i>	9.5	20
74	Homogeneous fluorescent specific PCR for the authentication of medicinal snakes using cationic conjugated polymers. <i>Scientific Reports</i> , 2015 , 5, 16260	4.9	6
73	An optical nanoruler based on a conjugated polymer-silver nanoprism pair for label-free protein detection. <i>Advanced Materials</i> , 2015 , 27, 6040-5	24	76
72	A Supramolecular Antibiotic Switch for Antibacterial Regulation. <i>Angewandte Chemie</i> , 2015 , 127, 1340	 6-3 <i>3</i> 641 -	1 28
71	A Supramolecular Antibiotic Switch for Antibacterial Regulation. <i>Angewandte Chemie - International Edition</i> , 2015 , 54, 13208-13	16.4	211
70	A glucose-powered antimicrobial system using organic-inorganic assembled network materials. <i>Chemical Communications</i> , 2015 , 51, 722-4	5.8	26

(2013-2015)

69	Synthesis and characterization of water-soluble polythiophene derivatives for cell imaging. <i>Scientific Reports</i> , 2015 , 5, 7617	4.9	31
68	Convenient, sensitive and high-throughput method for screening botanic origin. <i>Scientific Reports</i> , 2014 , 4, 5395	4.9	5
67	Associated analysis of DNA methylation for cancer detection using CCP-based FRET technique. <i>Analytical Chemistry</i> , 2014 , 86, 346-50	7.8	71
66	Preparation and biofunctionalization of multicolor conjugated polymer nanoparticles for imaging and detection of tumor cells. <i>Advanced Materials</i> , 2014 , 26, 3926-30	24	138
65	Conjugated-polymer-based energy-transfer systems for antimicrobial and anticancer applications. <i>Advanced Materials</i> , 2014 , 26, 6978-82	24	124
64	Multicellular assembly and light-regulation of cell-cell communication by conjugated polymer materials. <i>Advanced Materials</i> , 2014 , 26, 2371-5	24	43
63	Multi-colored fibers by self-assembly of DNA, histone proteins, and cationic conjugated polymers. <i>Angewandte Chemie - International Edition</i> , 2014 , 53, 424-8	16.4	40
62	Conjugated polymer nanoparticles for cell membrane imaging. <i>Chemistry - an Asian Journal</i> , 2014 , 9, 31	24 .4	18
61	Cationic oligo(p-phenylene vinylene) materials for combating drug resistance of cancer cells by light manipulation. <i>Advanced Materials</i> , 2014 , 26, 5986-90	24	42
60	Cationic conjugated polymers for discrimination of microbial pathogens. <i>Advanced Materials</i> , 2014 , 26, 4333-8	24	201
59	Multi-Colored Fibers by Self-Assembly of DNA, Histone Proteins, and Cationic Conjugated Polymers. <i>Angewandte Chemie</i> , 2014 , 126, 434-438	3.6	9
58	Logic-signal output of fluorescent proteins for screening antibiotic combinations. <i>Science China Chemistry</i> , 2014 , 57, 1696-1702	7.9	5
57	Engineered riboswitch as a gene-regulatory platform for reducing antibiotic resistance. <i>Methods in Molecular Biology</i> , 2014 , 1111, 251-8	1.4	3
56	Synthesis of a new conjugated polymer for cell membrane imaging by using an intracellular targeting strategy. <i>Polymer Chemistry</i> , 2013 , 4, 5212	4.9	35
55	MDR1-targeted siRNA delivery with cationic dendritic conjugated polymers. <i>Science Bulletin</i> , 2013 , 58, 2762-2766		2
54	Multiplex detection of KRAS and BRAF mutations using cationic conjugated polymers. <i>Science Bulletin</i> , 2013 , 58, 873-878		2
53	Bioluminescence as a light source for photosynthesis. <i>Chemical Communications</i> , 2013 , 49, 10685-7	5.8	7
52	Conjugated polymer nanoparticles: preparation, properties, functionalization and biological applications. <i>Chemical Society Reviews</i> , 2013 , 42, 6620-33	58.5	687

51	Protein-assisted conjugated polymer microarray: Fabrication and sensing applications. <i>Science Bulletin</i> , 2013 , 58, 4039-4044		2
50	Dopamine-Modified Cationic Conjugated Polymer as a New Platform for pH Sensing and Autophagy Imaging. <i>Advanced Functional Materials</i> , 2013 , 23, 764-769	15.6	52
49	Flexible antibacterial film deposited with polythiophene-porphyrin composite. <i>Advanced Healthcare Materials</i> , 2013 , 2, 1582-5	10.1	27
48	Multiplex Detection of DNA Mutations by the Fluorescence Fingerprint Spectrum Technique. <i>Angewandte Chemie</i> , 2013 , 125, 13258-13261	3.6	6
47	Multiplex detection of DNA mutations by the fluorescence fingerprint spectrum technique. <i>Angewandte Chemie - International Edition</i> , 2013 , 52, 13020-3	16.4	31
46	Conjugated polyelectrolyte materials for promoting progenitor cell growth without serum. <i>Scientific Reports</i> , 2013 , 3, 1702	4.9	7
45	A Multifunctional Cationic Pentathiophene: Synthesis, Organelle-Selective Imaging, and Anticancer Activity. <i>Advanced Functional Materials</i> , 2012 , 22, 736-743	15.6	38
44	A convenient preparation of multi-spectral microparticles by bacteria-mediated assemblies of conjugated polymer nanoparticles for cell imaging and barcoding. <i>Advanced Materials</i> , 2012 , 24, 637-41	24	79
43	Detection and differential diagnosis of colon cancer by a cumulative analysis of promoter methylation. <i>Nature Communications</i> , 2012 , 3, 1206	17.4	59
42	Visual detection of DNA mutation using multicolor fluorescent coding. <i>ACS Applied Materials & Interfaces</i> , 2012 , 4, 2885-90	9.5	28
41	Water-miscible organic J-aggregate nanoparticles as efficient two-photon fluorescent nano-probes for bio-imaging. <i>Journal of Materials Chemistry</i> , 2012 , 22, 17737		52
40	A highly emissive conjugated polyelectrolyte vector for gene delivery and transfection. <i>Advanced Materials</i> , 2012 , 24, 5428-32	24	50
39	Synthesis of a Bifunctional Fluorescent Polymer for Cell Imaging and Enzyme Detection. <i>Macromolecular Chemistry and Physics</i> , 2012 , 213, 2486-2491	2.6	8
38	Conjugated polymer nanoparticles for light-activated anticancer and antibacterial activity with imaging capability. <i>Langmuir</i> , 2012 , 28, 2091-8	4	89
37	Polymer-drug conjugates for intracellar molecule-targeted photoinduced inactivation of protein and growth inhibition of cancer cells. <i>Scientific Reports</i> , 2012 , 2, 766	4.9	49
36	Conjugated polymers for light-activated antifungal activity. <i>Small</i> , 2012 , 8, 524-9	11	24
35	Antifungal Activity: Conjugated Polymers for Light-Activated Antifungal Activity (Small 4/2012). <i>Small</i> , 2012 , 8, 524-524	11	13
34	Water-soluble conjugated polymers for imaging, diagnosis, and therapy. <i>Chemical Reviews</i> , 2012 , 112, 4687-735	68.1	944

33	Chemical molecule-induced light-activated system for anticancer and antifungal activities. <i>Journal of the American Chemical Society</i> , 2012 , 134, 13184-7	16.4	194
32	Visual optical discrimination and detection of microbial pathogens based on diverse interactions of conjugated polyelectrolytes with cells. <i>Journal of Materials Chemistry</i> , 2011 , 21, 7905		37
31	Tetraacenaphthoporphyrin: a Etonjugated porphyrin with efficient light-activated anticancer activity. <i>Chemistry - an Asian Journal</i> , 2011 , 6, 1147-50	4.5	8
30	Synthesis of amphiphilic polythiophene for cell imaging and monitoring the cellular distribution of a cisplatin anticancer drug. <i>Small</i> , 2011 , 7, 1464-70	11	35
29	Development of Film Sensors Based on Conjugated Polymers for Copper (II) Ion Detection. <i>Advanced Functional Materials</i> , 2011 , 21, 845-850	15.6	74
28	Water-Soluble Conjugated Polymers for Amplified Fluorescence Detection of Template-Independent DNA Elongation Catalyzed by Polymerase. <i>Advanced Functional Materials</i> , 2011 , 21, 3143-3149	15.6	32
27	Design Guidelines For Conjugated Polymers With Light-Activated Anticancer Activity. <i>Advanced Functional Materials</i> , 2011 , 21, 4058-4067	15.6	95
26	Multifunctional cationic poly(p-phenylene vinylene) polyelectrolytes for selective recognition, imaging, and killing of bacteria over mammalian cells. <i>Advanced Materials</i> , 2011 , 23, 4805-10	24	216
25	Biomedical Applications: Multifunctional Cationic Poly(p-phenylene vinylene) Polyelectrolytes for Selective Recognition, Imaging, and Killing of Bacteria Over Mammalian Cells (Adv. Mater. 41/2011). <i>Advanced Materials</i> , 2011 , 23, 4804-4804	24	
24	Rapid, Simple, and High-Throughput Antimicrobial Susceptibility Testing and Antibiotics Screening. <i>Angewandte Chemie</i> , 2011 , 123, 9781-9784	3.6	3
23	Rapid, simple, and high-throughput antimicrobial susceptibility testing and antibiotics screening. <i>Angewandte Chemie - International Edition</i> , 2011 , 50, 9607-10	16.4	54
22	A potent fluorescent probe for the detection of cell apoptosis. <i>Chemical Communications</i> , 2011 , 47, 552	4 5 .68	41
21	Fluorescent conjugated polymer-based FRET technique for detection of DNA methylation of cancer cells. <i>Nature Protocols</i> , 2010 , 5, 1255-64	18.8	81
20	Conjugated polymers as multifunctional biomedical platforms: Anticancer activity and apoptosis imaging. <i>Journal of Materials Chemistry</i> , 2010 , 20, 6942		40
19	Cationic conjugated polymers for optical detection of DNA methylation, lesions, and single nucleotide polymorphisms. <i>Accounts of Chemical Research</i> , 2010 , 43, 260-70	24.3	251
18	Water-soluble fluorescent conjugated polymers and their interactions with biomacromolecules for sensitive biosensors. <i>Chemical Society Reviews</i> , 2010 , 39, 2411-9	58.5	523
17	Conjugated polymer nanoparticles for drug delivery and imaging. <i>ACS Applied Materials & Amp; Interfaces</i> , 2010 , 2, 2429-35	9.5	205
16	A water-soluble conjugated polymer for protein identification and denaturation detection. <i>Chemistry - an Asian Journal</i> , 2010 , 5, 2524-9	4.5	13

15	Lipid-modified conjugated polymer nanoparticles for cell imaging and transfection. <i>Journal of Materials Chemistry</i> , 2010 , 20, 1312-1316		127
14	A conjugated polymer-Gd (III) complex as pH sensitive contrast agent in magnetic resonance imaging. Frontiers of Chemistry in China: Selected Publications From Chinese Universities, 2010, 5, 166-170)	3
13	Synthesis of Zwitterionic Water-Soluble Oligofluorenes with Good Light-Harvesting Ability. <i>Advanced Functional Materials</i> , 2010 , 20, 2175-2180	15.6	17
12	Assemblies of conjugated polyelectrolytes with proteins for controlled protein photoinactivation. <i>Advanced Materials</i> , 2010 , 22, 1602-6	24	37
11	An Optical Approach for Drug Screening Based on Light-Harvesting Conjugated Polyelectrolytes. <i>Angewandte Chemie</i> , 2009 , 121, 4436-4439	3.6	1
10	Water-Soluble Conjugated Polyelectrolyte-Based Fluorescence Enzyme Coupling Protocol for Continuous and Sensitive Egalactosidase Detection. <i>Macromolecular Chemistry and Physics</i> , 2009 , 210, 1188-1193	2.6	9
9	Fluorescence Logic-Signal-Based Multiplex Detection of Nucleases with the Assembly of a Cationic Conjugated Polymer and Branched DNA. <i>Angewandte Chemie</i> , 2009 , 121, 5420-5425	3.6	24
8	Cationic conjugated polymers for homogeneous and sensitive fluorescence detection of hyaluronidase. <i>Science in China Series B: Chemistry</i> , 2009 , 52, 827-832		8
7	Conjugated polymer/porphyrin complexes for efficient energy transfer and improving light-activated antibacterial activity. <i>Journal of the American Chemical Society</i> , 2009 , 131, 13117-24	16.4	277
6	Microorganism-based assemblies of luminescent conjugated polyelectrolytes. <i>Chemical Communications</i> , 2008 , 5999-6001	5.8	15
5	Water-soluble dendritic-conjugated polyfluorenes: Synthesis, characterization, and interactions with DNA. <i>Journal of Polymer Science Part A</i> , 2008 , 46, 7462-7472	2.5	28
4	In Situ-Induced Multivalent Anticancer Drug Clusters in Cancer Cells for Enhancing Drug Efficacy. <i>CCS Chemistry</i> ,97-105	7.2	24
3	Electrochemical Regulation of Antibacterial Activity Using Ferrocene-Containing Antibiotics. <i>CCS Chemistry</i> ,129-135	7.2	4
2	Biomimetic 4D-Printed Breathing Hydrogel Actuators by Nanothylakoid and Thermoresponsive Polymer Networks. <i>Advanced Functional Materials</i> ,2105544	15.6	10
1	Nature-inspired nanothylakoids for multimodal cancer therapeutics. Science China Materials,1	7.1	1