List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9492529/publications.pdf Version: 2024-02-01

LIBING

#	Article	IF	CITATIONS
1	Water-Soluble Conjugated Polymers for Imaging, Diagnosis, and Therapy. Chemical Reviews, 2012, 112, 4687-4735.	23.0	1,073
2	Conjugated polymer nanoparticles: preparation, properties, functionalization and biological applications. Chemical Society Reviews, 2013, 42, 6620.	18.7	781
3	Water-soluble fluorescent conjugated polymers and their interactions with biomacromolecules for sensitive biosensors. Chemical Society Reviews, 2010, 39, 2411.	18.7	581
4	Conjugated Polymer/Porphyrin Complexes for Efficient Energy Transfer and Improving Light-Activated Antibacterial Activity. Journal of the American Chemical Society, 2009, 131, 13117-13124.	6.6	310
5	Cationic Conjugated Polymers for Optical Detection of DNA Methylation, Lesions, and Single Nucleotide Polymorphisms. Accounts of Chemical Research, 2010, 43, 260-270.	7.6	264
6	A Supramolecular Antibiotic Switch for Antibacterial Regulation. Angewandte Chemie - International Edition, 2015, 54, 13208-13213.	7.2	256
7	Multifunctional Cationic Poly(<i>p</i> â€phenylene vinylene) Polyelectrolytes for Selective Recognition, Imaging, and Killing of Bacteria Over Mammalian Cells. Advanced Materials, 2011, 23, 4805-4810.	11.1	255
8	Cationic Conjugated Polymers for Discrimination of Microbial Pathogens. Advanced Materials, 2014, 26, 4333-4338.	11.1	248
9	Chemical Molecule-Induced Light-Activated System for Anticancer and Antifungal Activities. Journal of the American Chemical Society, 2012, 134, 13184-13187.	6.6	243
10	Conjugated Polymer Nanoparticles for Drug Delivery and Imaging. ACS Applied Materials & Interfaces, 2010, 2, 2429-2435.	4.0	230
11	Near-Infrared (NIR)-Absorbing Conjugated Polymer Dots as Highly Effective Photothermal Materials for <i>In Vivo</i> Cancer Therapy. Chemistry of Materials, 2016, 28, 8669-8675.	3.2	197
12	Luminescent, Oxygenâ€Supplying, Hemoglobin‣inked Conjugated Polymer Nanoparticles for Photodynamic Therapy. Angewandte Chemie - International Edition, 2019, 58, 10660-10665.	7.2	188
13	Electrochemiluminescence for Electric-Driven Antibacterial Therapeutics. Journal of the American Chemical Society, 2018, 140, 2284-2291.	6.6	180
14	Selective Antimicrobial Activities and Action Mechanism of Micelles Self-Assembled by Cationic Oligomeric Surfactants. ACS Applied Materials & amp; Interfaces, 2016, 8, 4242-4249.	4.0	165
15	Graphdiyne Materials as Nanotransducer for in Vivo Photoacoustic Imaging and Photothermal Therapy of Tumor. Chemistry of Materials, 2017, 29, 6087-6094.	3.2	149
16	Preparation and Biofunctionalization of Multicolor Conjugated Polymer Nanoparticles for Imaging and Detection of Tumor Cells. Advanced Materials, 2014, 26, 3926-3930.	11.1	148
17	Conjugatedâ€Polymerâ€Based Energyâ€Transfer Systems for Antimicrobial and Anticancer Applications. Advanced Materials, 2014, 26, 6978-6982	11.1	142
18	Lipid-modified conjugated polymernanoparticles for cell imaging and transfection. Journal of Materials Chemistry, 2010, 20, 1312-1316.	6.7	135

#	Article	IF	CITATIONS
19	Conjugated Polymer Nanoparticles to Augment Photosynthesis of Chloroplasts. Angewandte Chemie - International Edition, 2017, 56, 5308-5311.	7.2	122
20	Conjugated Polymer Nanoparticles with Appended Photoâ€Responsive Units for Controlled Drug Delivery, Release, and Imaging. Angewandte Chemie - International Edition, 2018, 57, 13114-13119.	7.2	120
21	Design and application of metal-organic frameworks and derivatives as heterogeneous Fenton-like catalysts for organic wastewater treatment: A review. Environment International, 2021, 146, 106273.	4.8	117
22	Solarâ€Powered Organic Semiconductor–Bacteria Biohybrids for CO ₂ Reduction into Acetic Acid. Angewandte Chemie - International Edition, 2020, 59, 7224-7229.	7.2	111
23	Photothermalâ€Responsive Conjugated Polymer Nanoparticles for Remote Control of Gene Expression in Living Cells. Advanced Materials, 2018, 30, 1705418.	11.1	110
24	Water-Soluble Conjugated Organic Molecules as Optical and Electrochemical Materials for Interdisciplinary Biological Applications. Accounts of Chemical Research, 2019, 52, 3211-3222.	7.6	109
25	Strategies to design conjugated polymer based materials for biological sensing and imaging. Coordination Chemistry Reviews, 2018, 354, 135-154.	9.5	102
26	Design Guidelines For Conjugated Polymers With Lightâ€Activated Anticancer Activity. Advanced Functional Materials, 2011, 21, 4058-4067.	7.8	101
27	Conjugated Polymer Nanoparticles for Light-Activated Anticancer and Antibacterial Activity with Imaging Capability. Langmuir, 2012, 28, 2091-2098.	1.6	99
28	A Convenient Preparation of Multiâ€Spectral Microparticles by Bacteriaâ€Mediated Assemblies of Conjugated Polymer Nanoparticles for Cell Imaging and Barcoding. Advanced Materials, 2012, 24, 637-641.	11.1	93
29	Fluorescent conjugated polymer-based FRET technique for detection of DNA methylation of cancer cells. Nature Protocols, 2010, 5, 1255-1264.	5.5	91
30	Nucleic Acids Analysis. Science China Chemistry, 2021, 64, 171-203.	4.2	88
31	pH-Responsive Peptide Supramolecular Hydrogels with Antibacterial Activity. Langmuir, 2017, 33, 3234-3240.	1.6	85
32	Enhanced Photothermal Bactericidal Activity of the Reduced Graphene Oxide Modified by Cationic Water-Soluble Conjugated Polymer. ACS Applied Materials & Interfaces, 2017, 9, 5382-5391.	4.0	81
33	Development of Film Sensors Based on Conjugated Polymers for Copper (<scp>II</scp>) Ion Detection. Advanced Functional Materials, 2011, 21, 845-850.	7.8	80
34	An Optical Nanoruler Based on a Conjugated Polymerâ^'Silver Nanoprism Pair for Labelâ€Free Protein Detection. Advanced Materials, 2015, 27, 6040-6045.	11.1	79
35	Conjugated Polymer with Intrinsic Alkyne Units for Synergistically Enhanced Raman Imaging in Living Cells. Angewandte Chemie - International Edition, 2017, 56, 13455-13458.	7.2	78
36	Associated Analysis of DNA Methylation for Cancer Detection Using CCP-Based FRET Technique. Analytical Chemistry, 2014, 86, 346-350.	3.2	77

#	Article	IF	CITATIONS
37	Supramolecular Conjugated Polymer Materials for in Situ Pathogen Detection. ACS Applied Materials & Interfaces, 2016, 8, 31550-31557.	4.0	73
38	Biofilm Inhibition and Elimination Regulated by Cationic Conjugated Polymers. ACS Applied Materials & Interfaces, 2017, 9, 16933-16938.	4.0	73
39	Detection and differential diagnosis of colon cancer by a cumulative analysis of promoter methylation. Nature Communications, 2012, 3, 1206.	5.8	69
40	Recent Advances in Conjugated Polymer Materials for Disease Diagnosis. Small, 2016, 12, 696-705.	5.2	69
41	Efficient Conjugated Polymer–Methyl Viologen Electron Transfer System for Controlled Photo-Driven Hydrogen Evolution. ACS Applied Materials & Interfaces, 2017, 9, 10355-10359.	4.0	66
42	Selfâ€Assembled Nanomedicines for Anticancer and Antibacterial Applications. Advanced Healthcare Materials, 2018, 7, e1800670.	3.9	63
43	Supramolecular Antibiotic Switches: A Potential Strategy for Combating Drug Resistance. Chemistry - A European Journal, 2016, 22, 11114-11121.	1.7	61
44	Crossâ€Linking of Thiolated Paclitaxel–Oligo(<i>p</i> â€phenylene vinylene) Conjugates Aggregates inside Tumor Cells Leads to "Chemical Locks―That Increase Drug Efficacy. Advanced Materials, 2018, 30, 1704888.	11.1	61
45	Artificial regulation of state transition for augmenting plant photosynthesis using synthetic light-harvesting polymer materials. Science Advances, 2020, 6, eabc5237.	4.7	61
46	Reactive Amphiphilic Conjugated Polymers for Inhibiting Amyloid β Assembly. Angewandte Chemie - International Edition, 2019, 58, 5988-5993.	7.2	60
47	Rapid, Simple, and Highâ€Throughput Antimicrobial Susceptibility Testing and Antibiotics Screening. Angewandte Chemie - International Edition, 2011, 50, 9607-9610.	7.2	59
48	Dopamineâ€Modified Cationic Conjugated Polymer as a New Platform for pH Sensing and Autophagy Imaging. Advanced Functional Materials, 2013, 23, 764-769.	7.8	59
49	A Highly Emissive Conjugated Polyelectrolyte Vector for Gene Delivery and Transfection. Advanced Materials, 2012, 24, 5428-5432.	11.1	58
50	Nearâ€Infraredâ€Light Remoteâ€Controlled Activation of Cancer Immunotherapy Using Photothermal Conjugated Polymer Nanoparticles. Advanced Materials, 2021, 33, e2102570.	11.1	58
51	Water-miscible organic J-aggregate nanoparticles as efficient two-photon fluorescent nano-probes for bio-imaging. Journal of Materials Chemistry, 2012, 22, 17737.	6.7	53
52	Polymer-drug conjugates for intracellar molecule-targeted photoinduced inactivation of protein and growth inhibition of cancer cells. Scientific Reports, 2012, 2, 766.	1.6	53
53	Multicellular Assembly and Lightâ€Regulation of Cell–Cell Communication by Conjugated Polymer Materials. Advanced Materials, 2014, 26, 2371-2375.	11.1	53
54	Photothermal-Responsive Conjugated Polymer Nanoparticles for the Rapid and Effective Killing of Bacteria. ACS Applied Bio Materials, 2018, 1, 27-32.	2.3	53

#	Article	IF	CITATIONS
55	Conjugated Polymer Materials for Photothermal Therapy. Advanced Therapeutics, 2018, 1, 1800057.	1.6	53
56	Conjugated Polymer-Based Photoelectrochemical Cytosensor with Turn-On Enable Signal for Sensitive Cell Detection. ACS Applied Materials & amp; Interfaces, 2018, 10, 6618-6623.	4.0	52
57	In Situ Synthesis of Photoactive Polymers on a Living Cell Surface via Bioâ€Palladium Catalysis for Modulating Biological Functions. Angewandte Chemie - International Edition, 2021, 60, 5759-5765.	7.2	49
58	Preparation of Conjugated Polymer Grafted with H ₂ O ₂ -Sensitive Prodrug for Cell Imaging and Tumor Cell Killing. ACS Applied Materials & Interfaces, 2016, 8, 42-46.	4.0	48
59	In Situ-Induced Multivalent Anticancer Drug Clusters in Cancer Cells for Enhancing Drug Efficacy. CCS Chemistry, 0, , 97-105.	4.6	48
60	Multi olored Fibers by Selfâ€Assembly of DNA, Histone Proteins, and Cationic Conjugated Polymers. Angewandte Chemie - International Edition, 2014, 53, 424-428.	7.2	47
61	A potent fluorescent probe for the detection ofcellapoptosis. Chemical Communications, 2011, 47, 5524-5526.	2.2	46
62	Cationic Oligo(pâ€phenylene vinylene) Materials for Combating Drug Resistance of Cancer Cells by Light Manipulation. Advanced Materials, 2014, 26, 5986-5990.	11.1	46
63	Supramolecular Conjugated Polymer Systems with Controlled Antibacterial Activity. Langmuir, 2017, 33, 1116-1120.	1.6	45
64	Biomimetic 4Dâ€Printed Breathing Hydrogel Actuators by Nanothylakoid and Thermoresponsive Polymer Networks. Advanced Functional Materials, 2021, 31, 2105544.	7.8	45
65	3D printing of artificial skin patches with bioactive and optically active polymer materials for anti-infection and augmenting wound repair. Materials Horizons, 2022, 9, 342-349.	6.4	44
66	Conjugated Polyelectrolyte–Silver Nanostructure Pair for Detection and Killing of Bacteria. Advanced Materials Technologies, 2017, 2, 1700033.	3.0	43
67	Conjugated polymers as multifunctional biomedical platforms: Anticancer activity and apoptosis imaging. Journal of Materials Chemistry, 2010, 20, 6942.	6.7	42
68	Luminescent, Oxygenâ€6upplying, Hemoglobin‣inked Conjugated Polymer Nanoparticles for Photodynamic Therapy. Angewandte Chemie, 2019, 131, 10770-10775.	1.6	42
69	Cationic Conjugated Polymers-Induced Quorum Sensing of Bacteria Cells. Analytical Chemistry, 2016, 88, 2985-2988.	3.2	41
70	Antimicrobial activity of a conjugated polymer with cationic backbone. Dyes and Pigments, 2019, 160, 519-523.	2.0	41
71	Conjugated Polymer-Quantum Dot Hybrid Materials for Pathogen Discrimination and Disinfection. ACS Applied Materials & amp; Interfaces, 2020, 12, 21263-21269.	4.0	41
72	Assemblies of Conjugated Polyelectrolytes with Proteins for Controlled Protein Photoinactivation. Advanced Materials, 2010, 22, 1602-1606.	11.1	40

#	Article	IF	CITATIONS
73	Visual optical discrimination and detection of microbial pathogens based on diverse interactions of conjugated polyelectrolytes with cells. Journal of Materials Chemistry, 2011, 21, 7905.	6.7	38
74	Synthesis of Amphiphilic Polythiophene for Cell Imaging and Monitoring the Cellular Distribution of a Cisplatin Anticancer Drug. Small, 2011, 7, 1464-1470.	5.2	38
75	A Multifunctional Cationic Pentathiophene: Synthesis, Organelleâ€Selective Imaging, and Anticancer Activity. Advanced Functional Materials, 2012, 22, 736-743.	7.8	38
76	Synthesis of a new conjugated polymer for cell membrane imaging by using an intracellular targeting strategy. Polymer Chemistry, 2013, 4, 5212.	1.9	38
77	Multiplex Detection of DNA Mutations by the Fluorescence Fingerprint Spectrum Technique. Angewandte Chemie - International Edition, 2013, 52, 13020-13023.	7.2	38
78	Designing an Amino-Fullerene Derivative C ₇₀ –(EDA) ₈ to Fight Superbacteria. ACS Applied Materials & Interfaces, 2019, 11, 14597-14607.	4.0	38
79	Pyridinium‣ubstituted TetraphenylethyleneEntailing Alkyne Moiety: Enhancement of Photosensitizing Efficiency and Antimicrobial Activity. Chemistry - an Asian Journal, 2017, 12, 1013-1019.	1.7	37
80	Conducting Polymers–Thylakoid Hybrid Materials for Water Oxidation and Photoelectric Conversion. Advanced Electronic Materials, 2019, 5, 1800789.	2.6	36
81	Conjugated Polymer Nanoparticles to Augment Photosynthesis of Chloroplasts. Angewandte Chemie, 2017, 129, 5392-5395.	1.6	35
82	Visual Detection of DNA Mutation Using Multicolor Fluorescent Coding. ACS Applied Materials & Interfaces, 2012, 4, 2885-2890.	4.0	34
83	Synthesis and Characterization of Water-Soluble Polythiophene Derivatives for Cell Imaging. Scientific Reports, 2015, 5, 7617.	1.6	34
84	Supramolecular Strategy Based on Conjugated Polymers for Discrimination of Virus and Pathogens. Biomacromolecules, 2018, 19, 2117-2122.	2.6	34
85	Oral delivery of antioxidant enzymes for effective treatment of inflammatory disease. Biomaterials, 2021, 271, 120753.	5.7	34
86	Waterâ€Soluble Conjugated Polymers for Amplified Fluorescence Detection of Templateâ€Independent DNA Elongation Catalyzed by Polymerase. Advanced Functional Materials, 2011, 21, 3143-3149.	7.8	33
87	A glucose-powered antimicrobial system using organic–inorganic assembled network materials. Chemical Communications, 2015, 51, 722-724.	2.2	33
88	Fluorescence Ratiometric Assay Strategy for Chemical Transmitter of Living Cells Using H ₂ O ₂ -Sensitive Conjugated Polymers. ACS Applied Materials & Interfaces, 2015, 7, 24110-24118.	4.0	33
89	Conductive Polymer–Exoelectrogen Hybrid Bioelectrode with Improved Biofilm Formation and Extracellular Electron Transport. Advanced Electronic Materials, 2019, 5, 1900320.	2.6	33
90	Photoactive Conjugated Polymerâ€Based Hybrid Biosystems for Enhancing Cyanobacterial Photosynthesis and Regulating Redox State of Protein. Advanced Functional Materials, 2021, 31, 2007814.	7.8	31

#	Article	IF	CITATIONS
91	Living Bacteria-Mediated Aerobic Photoinduced Radical Polymerization for in Situ Bacterial Encapsulation and Differentiation. CCS Chemistry, 2021, 3, 1296-1305.	4.6	31
92	Waterâ€soluble dendritic onjugated polyfluorenes: Synthesis, characterization, and interactions with DNA. Journal of Polymer Science Part A, 2008, 46, 7462-7472.	2.5	29
93	Conjugated Polymers for Light-Activated Antifungal Activity. Small, 2012, 8, 525-529.	5.2	29
94	Flexible Antibacterial Film Deposited with Polythiophene–Porphyrin Composite. Advanced Healthcare Materials, 2013, 2, 1582-1585.	3.9	28
95	Tuning Antibacterial Activity of Cyclodextrin-Attached Cationic Ammonium Surfactants by a Supramolecular Approach. ACS Applied Materials & Interfaces, 2017, 9, 31657-31666.	4.0	28
96	Conjugated Polymer Nanomaterials for Phototherapy of Cancer. Chemical Research in Chinese Universities, 2020, 36, 237-242.	1.3	27
97	Pre-aggregation of Al13 in optimizing coagulation for removal of humic acid. Chemosphere, 2021, 277, 130268.	4.2	27
98	Conjugated Polymer Nanogel Binding Anticancer Drug through Hydrogen Bonds for Sustainable Drug Delivery. ACS Applied Bio Materials, 2019, 2, 6012-6020.	2.3	26
99	<i>In situ</i> self-assembly of conjugated polyelectrolytes for cancer targeted imaging and photodynamic therapy. Biomaterials Science, 2020, 8, 2156-2163.	2.6	25
100	Preparation of Gemini Surfactant/Conjugated Polymer Aggregates for Enhanced Fluorescence and Bioimaging Application. ACS Applied Materials & Interfaces, 2017, 9, 23544-23554.	4.0	24
101	Reactive Conjugated Polymers for the Modulation of Islet Amyloid Polypeptide Assembly. ACS Applied Materials & Interfaces, 2019, 11, 22973-22978.	4.0	24
102	Optimized coagulation pathway of Al13: Effect of in-situ Aggregation of Al13. Chemosphere, 2019, 230, 76-83.	4.2	24
103	Förster Resonance Energy Transfer Mediated Rapid and Synergistic Discrimination of Bacteria over Fungi Using a Cationic Conjugated Glycopolymer. ACS Applied Bio Materials, 2020, 3, 20-28.	2.3	23
104	Synthesis of a Novel Quinoline Skeleton Introduced Cationic Polyfluorene Derivative for Multimodal Antimicrobial Application. ACS Applied Materials & Interfaces, 2015, 7, 25390-25395.	4.0	22
105	Cyclometalated iridium(<scp>iii</scp>) complex nanoparticles for mitochondria-targeted photodynamic therapy. Nanoscale, 2020, 12, 14061-14067.	2.8	22
106	Removal of phenolic contaminants from water by in situ coated surfactant on Keggin-aluminum nanocluster and biodegradation. Chemosphere, 2021, 269, 128692.	4.2	22
107	Conjugated Polymer Nanoparticles for Cell Membrane Imaging. Chemistry - an Asian Journal, 2014, 9, 3121-3124.	1.7	21
108	Cationic Poly(<i>p</i> â€phenylene vinylene) Materials as a Multifunctional Platform for Lightâ€Enhanced siRNA Delivery. Chemistry - an Asian Journal, 2016, 11, 2686-2689.	1.7	21

#	Article	IF	CITATIONS
109	Intracellular Radical Polymerization of Paclitaxel-Bearing Acrylamide for Self-Inflicted Apoptosis of Cancer Cells. , 2021, 3, 1307-1314.		21
110	Design of antibacterial peptide-like conjugated molecule with broad spectrum antimicrobial ability. Science China Chemistry, 2018, 61, 113-117.	4.2	21
111	Selective Fluorescence Imaging of Cancer Cells Based on ROSâ€Triggered Intracellular Crossâ€Linking of Artificial Enzyme. Angewandte Chemie - International Edition, 2022, 61, .	7.2	21
112	Blood-brain-barrier penetrable thiolated paclitaxel-oligo (p-phenylene vinylene) nanomedicine with increased drug efficiency for glioblastoma treatment. Nano Today, 2020, 35, 100969.	6.2	20
113	Electrochemical Regulation of Antibacterial Activity Using Ferrocene-Containing Antibiotics. CCS Chemistry, 2021, 3, 129-135.	4.6	20
114	Soft Particles of Gemini Surfactant/Conjugated Polymer for Enhanced Anticancer Activity of Chemotherapeutics. ACS Applied Materials & Interfaces, 2018, 10, 37-41.	4.0	19
115	Conjugated Polymer Enhanced Photoelectric Response of Self-Circulating Photosynthetic Bioelectrochemical Cell. ACS Applied Materials & Interfaces, 2019, 11, 38993-39000.	4.0	19
116	Deprotonation and aggregation of Al13 under alkaline titration: A simulating study related to coagulation process. Water Research, 2021, 203, 117562.	5.3	19
117	Preparation of Reactive Oligo(<i>p</i> â€Phenylene Vinylene) Materials for Spatial Profiling of the Chemical Reactivity of Intracellular Compartments. Advanced Materials, 2016, 28, 3749-3754.	11.1	18
118	Polythiophene–Peptide Biohybrid Assemblies for Enhancing Photoinduced Hydrogen Evolution. Advanced Electronic Materials, 2017, 3, 1700161.	2.6	18
119	Cationic conjugated polymers for detection and inactivation of pathogens. Science China Chemistry, 2017, 60, 1567-1574.	4.2	18
120	Synthesis of Zwitterionic Water‧oluble Oligofluorenes with Good Lightâ€Harvesting Ability. Advanced Functional Materials, 2010, 20, 2175-2180.	7.8	17
121	Oligo(p-phenylenevinylene) Derivative-Incorporated and Enzyme-Responsive Hybrid Hydrogel for Tumor Cell-Specific Imaging and Activatable Photodynamic Therapy. ACS Biomaterials Science and Engineering, 2018, 4, 2037-2045.	2.6	17
122	A hybrid nano-assembly with synergistically promoting photothermal and catalytic radical activity for antibacterial therapy. Chinese Chemical Letters, 2022, 33, 4605-4609.	4.8	17
123	Supramolecular Germicide Switches through Hostâ€Guest Interactions for Decelerating Emergence of Drugâ€Resistant Pathogens. ChemistrySelect, 2017, 2, 7940-7945.	0.7	16
124	Reactive Amphiphilic Conjugated Polymers for Inhibiting Amyloid β Assembly. Angewandte Chemie, 2019, 131, 6049-6054.	1.6	16
125	Microorganism-based assemblies of luminescent conjugated polyelectrolytes. Chemical Communications, 2008, , 5999.	2.2	15
126	Antifungal Activity: Conjugated Polymers for Lightâ€Activated Antifungal Activity (Small 4/2012). Small, 2012, 8, 524-524.	5.2	15

#	Article	IF	CITATIONS
127	An Optoelectronic Device for Rapid Monitoring of Creatine Kinase Using Cationic Conjugated Polyelectrolyte. Advanced Materials Technologies, 2019, 4, 1900361.	3.0	15
128	3D Bioprinting of Polythiophene Materials for Promoting Stem Cell Proliferation in a Nutritionally Deficient Environment. ACS Applied Materials & Interfaces, 2021, 13, 25759-25770.	4.0	15
129	A Waterâ€Soluble Conjugated Polymer for Protein Identification and Denaturation Detection. Chemistry - an Asian Journal, 2010, 5, 2524-2529.	1.7	14
130	Optically-controlled supramolecular self-assembly of an antibiotic for antibacterial regulation. Chemical Communications, 2019, 55, 14466-14469.	2.2	14
131	Bacteria-Mediated Intracellular Click Reaction for Drug Enrichment and Selective Apoptosis of Drug-Resistant Tumor Cells. ACS Applied Materials & amp; Interfaces, 2022, 14, 12106-12115.	4.0	14
132	Multifunctional Assembly of Micrometer-Sized Colloids for Cell Sorting. Small, 2015, 11, 2555-2563.	5.2	12
133	Photoactive Oligo(<i>p</i> -phenylenevinylene) Functionalized with Phospholipid Units for Control and Visualization of Delivery into Living Cells. ACS Applied Materials & Interfaces, 2018, 10, 27555-27561.	4.0	12
134	Design and Synthesis of Reactive Perylene Tetracarboxylic Diimide Derivatives for Rapid Cell Imaging. ACS Omega, 2018, 3, 8691-8696.	1.6	12
135	Supramolecular Nanofibers for Encapsulation and In Situ Differentiation of Neural Stem Cells. Advanced Healthcare Materials, 2020, 9, e1901295.	3.9	12
136	Photoelectrochemical Strategy for Discrimination of Microbial Pathogens Using Conjugated Polymers. Chemistry - an Asian Journal, 2018, 13, 3469-3473.	1.7	11
137	Conjugated Polymer Nanoparticles with Appended Photoâ€Responsive Units for Controlled Drug Delivery, Release, and Imaging. Angewandte Chemie, 2018, 130, 13298-13303.	1.6	11
138	Efficient purification of Al30 by organic complexation method. Journal of Environmental Sciences, 2019, 80, 240-247.	3.2	11
139	Fluorescent and Biocompatible Ruthenium oordinated Oligo(<i>pâ€</i> phenylenevinylene) Nanocatalysts for Transfer Hydrogenation in the Mitochondria of Living Cells. Chemistry - A European Journal, 2020, 26, 4489-4495.	1.7	11
140	Integration of Self‣uminescence and Oxygen Selfâ€Supply: A Potential Photodynamic Therapy Strategy for Deep Tumor Treatment. ChemPlusChem, 2020, 85, 510-518.	1.3	11
141	Cationic conjugated polymers for enhancing beneficial bacteria adhesion and biofilm formation in gut microbiota. Colloids and Surfaces B: Biointerfaces, 2020, 188, 110815.	2.5	11
142	Photoactive conjugated polymer/graphdiyne nanocatalyst for CO ₂ reduction to CO in living cells for hypoxia tumor treatment. Materials Chemistry Frontiers, 2021, 5, 5841-5845.	3.2	11
143	3D Bioprinting of Reinforced Vessels by Dual-Cross-linked Biocompatible Hydrogels. ACS Applied Bio Materials, 2021, 4, 4549-4556.	2.3	11
144	Photocontrolled RAFT Polymerization Catalyzed by Conjugated Polymers under Aerobic Aqueous Conditions. ACS Macro Letters, 2021, 10, 996-1001.	2.3	11

#	Article	IF	CITATIONS
145	Synthesis of a new cationic non-conjugated polymer for discrimination of microbial pathogens. Polymer Chemistry, 2016, 7, 6699-6702.	1.9	10
146	Conjugated Polymer with Intrinsic Alkyne Units for Synergistically Enhanced Raman Imaging in Living Cells. Angewandte Chemie, 2017, 129, 13640-13643.	1.6	10
147	Oligo(<i>p-</i> phenyleneethynylene) Derivatives for Mitochondria Targeting in Living Cells through Bioorthogonal Reactions. Chemistry of Materials, 2018, 30, 5544-5549.	3.2	10
148	Design of an Amphiphilic Perylene Diimide for Optical Recognition of Anticancer Drug through a Chiralityâ€Induced Helical Structure. Chemistry - A European Journal, 2019, 25, 9834-9839.	1.7	10
149	Boronic Acid-Functionalized Conjugated Polymer for Controllable Cell Membrane Imaging. ACS Applied Bio Materials, 2019, 2, 1787-1791.	2.3	10
150	Optical Tuning of Antibacterial Activity of Photoresponsive Antibiotics. ACS Applied Bio Materials, 2020, 3, 4751-4755.	2.3	10
151	Solarâ€Powered Organic Semiconductor–Bacteria Biohybrids for CO 2 Reduction into Acetic Acid. Angewandte Chemie, 2020, 132, 7291-7296.	1.6	10
152	Sensitive Detection and Conjoint Analysis of Promoter Methylation by Conjugated Polymers for Differential Diagnosis and Prognosis of Glioma. ACS Applied Materials & Interfaces, 2021, 13, 9291-9299.	4.0	10
153	Waterâ€Soluble Conjugated Polyelectrolyteâ€Based Fluorescence Enzyme Coupling Protocol for Continuous and Sensitive <i>β</i> â€Galactosidase Detection. Macromolecular Chemistry and Physics, 2009, 210, 1188-1193.	1.1	9
154	Tetraacenaphthoporphyrin: A π onjugated Porphyrin with Efficient Lightâ€Activated Anticancer Activity. Chemistry - an Asian Journal, 2011, 6, 1147-1150.	1.7	9
155	Synthesis of a Bifunctional Fluorescent Polymer for Cell Imaging and Enzyme Detection. Macromolecular Chemistry and Physics, 2012, 213, 2486-2491.	1.1	9
156	Bioluminescence as a light source for photosynthesis. Chemical Communications, 2013, 49, 10685.	2.2	9
157	Conjugated Polyelectrolyte Materials for Promoting Progenitor Cell Growth Without Serum. Scientific Reports, 2013, 3, 1702.	1.6	9
158	Biohybrid Conjugated Polymer Materials for Augmenting Energy Conversion of Bioelectrochemical Systems. Chemistry - A European Journal, 2020, 26, 15065-15073.	1.7	9
159	Polymer nanoparticles regulate macrophage repolarization for antitumor treatment. Chemical Communications, 2021, 57, 6919-6922.	2.2	9
160	Formation of Al30 aggregates and its correlation to the coagulation effect. Chemosphere, 2021, 278, 130493.	4.2	9
161	Cationic conjugated polymers for homogeneous and sensitive fluorescence detection of hyaluronidase. Science in China Series B: Chemistry, 2009, 52, 827-832.	0.8	8
162	Polarity Conversion of Conjugated Polymer for Lysosome Escaping. ACS Applied Materials & amp; Interfaces, 2017, 9, 27427-27432.	4.0	8

#	Article	IF	CITATIONS
163	Conjugated polymer nanoparticles as fluorescence switch for selective cell imaging. Chinese Chemical Letters, 2020, 31, 755-758.	4.8	8
164	Development of A Thermoâ€Responsive Conjugated Polymer with Photobleachingâ€Resistance Property and Tunable Photosensitizing Performance. Macromolecular Rapid Communications, 2020, 41, 2000249.	2.0	8
165	Homogeneous fluorescent specific PCR for the authentication of medicinal snakes using cationic conjugated polymers. Scientific Reports, 2015, 5, 16260.	1.6	7
166	ROS self-scavenging polythiophene materials for cell imaging. Polymer Chemistry, 2015, 6, 8244-8247.	1.9	7
167	Supramolecular conjugated polymer materials for organelle imaging in living cells. Materials Chemistry Frontiers, 2017, 1, 1768-1772.	3.2	7
168	Bacteriorhodopsinâ€Based Biophotovoltaic Devices Driven by Chemiluminescence as Endogenous Light Source. Advanced Optical Materials, 2020, 8, 1901551.	3.6	7
169	Wireless Charging Electrochemiluminescence System for Ionic Channel Manipulation in Living Cells. ACS Applied Materials & Interfaces, 2020, 12, 24655-24661.	4.0	7
170	In Situ Synthesis of Photoactive Polymers on a Living Cell Surface via Bioâ€Palladium Catalysis for Modulating Biological Functions. Angewandte Chemie, 2021, 133, 5823-5829.	1.6	7
171	Logic-signal output of fluorescent proteins for screening antibiotic combinations. Science China Chemistry, 2014, 57, 1696-1702.	4.2	5
172	Convenient, Sensitive and High-Throughput Method for Screening Botanic Origin. Scientific Reports, 2015, 4, 5395.	1.6	5
173	Quantum Dots for Monitoring Choline Consumption Process of Living Cells via an Electrostatic Force-Mediated Energy Transfer. ACS Applied Bio Materials, 2019, 2, 5528-5534.	2.3	5
174	Oligo(p-phenylenevinylene)-rhodium complex as intracellular catalyst for enhancing biosynthesis of polyhydroxybutyrate biomaterials. Science China Chemistry, 2021, 64, 143-150.	4.2	5
175	Fluorescence Imaging of Mammalian Cells with Cationic Conjugated Polyelectrolytes. ChemPhotoChem, 2021, 5, 123-130.	1.5	5
176	Nature-inspired nanothylakoids for multimodal cancer therapeutics. Science China Materials, 2022, 65, 1971-1979.	3.5	5
177	Fluorescence Visual Detection of Herbal Product Substitutions at Terminal Herbal Markets by CCP-based FRET technique. Scientific Reports, 2016, 6, 35540.	1.6	4
178	Selective biocompatibility and responsive imaging property of cationic conjugated polyelectrolyte to cancer cells. Chinese Chemical Letters, 2017, 28, 1975-1978.	4.8	4
179	Conjoint Analysis of DNA Methylation for Tumor Differentiation Using Cationic Conjugated Polymers. ACS Applied Bio Materials, 2020, 3, 2867-2872.	2.3	4
180	Supramolecular Regulation of Catalytic Activity for an Amphiphilic Pyreneâ€Ruthenium Complex in Water. Chemistry - A European Journal, 2021, 27, 11567-11573.	1.7	4

#	Article	IF	CITATIONS
181	Clickable amino acid derivative tuned self-assembly of antigen and adjuvant for cancer immunotherapy. Journal of Controlled Release, 2021, 337, 306-316.	4.8	4
182	Conjugated polymer materials for detection and discrimination of pathogenic microorganisms: Guarantee of biosafety. Biosafety and Health, 2022, 4, 79-86.	1.2	4
183	A conjugated polymer-Gd (III) complex as pH sensitive contrast agent in magnetic resonance imaging. Frontiers of Chemistry in China: Selected Publications From Chinese Universities, 2010, 5, 166-170.	0.4	3
184	MDR1-targeted siRNA delivery with cationic dendritic conjugated polymers. Science Bulletin, 2013, 58, 2762-2766.	1.7	3
185	Engineered Riboswitch as a Gene-Regulatory Platform for Reducing Antibiotic Resistance. Methods in Molecular Biology, 2014, 1111, 251-258.	0.4	3
186	Selective Fluorescence Imaging of Cancer Cells Based on ROSâ€Triggered Intracellular Crossâ€Linking of Artificial Enzyme. Angewandte Chemie, 2022, 134, .	1.6	3
187	Multiplex detection of KRAS and BRAF mutations using cationic conjugated polymers. Science Bulletin, 2013, 58, 873-878.	1.7	2
188	Protein-assisted conjugated polymer microarray: Fabrication and sensing applications. Science Bulletin, 2013, 58, 4039-4044.	1.7	2
189	Protein Detection: An Optical Nanoruler Based on a Conjugated Polymerâ^'Silver Nanoprism Pair for Label-Free Protein Detection (Adv. Mater. 39/2015). Advanced Materials, 2015, 27, 6039-6039.	11.1	2
190	Crystallization of aluminum polycation sulfates: transformation of tetrahedral crystals into block crystals in aqueous solutions. CrystEngComm, 2019, 21, 202-206.	1.3	2
191	Application of Cationic Conjugated Polymer–Outer Membrane Vesicle Complexes in Inhibiting Red Blood Cell Aggregation. Organic Materials, 2019, 01, 038-042.	1.0	2
192	Macromol. Chem. Phys. 15/2009. Macromolecular Chemistry and Physics, 2009, 210, .	1.1	0
193	Biomedical Applications: Multifunctional Cationic Poly(<i>p</i> â€phenylene vinylene) Polyelectrolytes for Selective Recognition, Imaging, and Killing of Bacteria Over Mammalian Cells (Adv. Mater. 41/2011). Advanced Materials, 2011, 23, 4804-4804.	11.1	0
194	Polyelectrolyteâ€6ilver Nanostructures: Conjugated Polyelectrolyte–Silver Nanostructure Pair for Detection and Killing of Bacteria (Adv. Mater. Technol. 7/2017). Advanced Materials Technologies, 2017, 2, .	3.0	0
195	Photoactive Oligo(p-phenylene vinylene) Material for Functional Regulation of Induced Pluripotent Stem Cells. ACS Applied Materials & Interfaces, 2020, 12, 3438-3444.	4.0	0
196	Frontispiece: Biohybrid Conjugated Polymer Materials for Augmenting Energy Conversion of Bioelectrochemical Systems. Chemistry - A European Journal, 2020, 26, .	1.7	0
197	Selective reaction of conjugated polymers with basic proteins for broad-spectrum antivirulence therapy. NPG Asia Materials, 2021, 13, .	3.8	0