RamÃ³n Alcubilla

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9492460/publications.pdf

Version: 2024-02-01

220 papers

4,550 citations

34 h-index

117619

133244 59 g-index

221 all docs

221 docs citations

221 times ranked 4753 citing authors

#	Article	IF	CITATIONS
1	Textured PDMS Films Applied to Thin Crystalline Silicon Solar Cells. IEEE Journal of Photovoltaics, 2020, 10, 351-357.	2.5	7
2	Black silicon backâ€contact module with wide light acceptance angle. Progress in Photovoltaics: Research and Applications, 2020, 28, 210-216.	8.1	8
3	Low-Cost High-Sensitive Suns–\$V_{ext{oc}}\$ Measurement Instrument to Characterize c-Si Solar Cells. IEEE Transactions on Instrumentation and Measurement, 2020, 69, 6429-6435.	4.7	6
4	Improved Electron Selectivity in Silicon Solar Cells by Cathode Modification with a Dipolar Conjugated Polyelectrolyte Interlayer. ACS Applied Energy Materials, 2019, 2, 5954-5959.	5.1	8
5	Germanium photovoltaic cells with MoOx hole-selective contacts. Solar Energy, 2019, 181, 357-360.	6.1	14
6	Thermal Emission of Silicon at Near-Infrared Frequencies Mediated by Mie Resonances. ACS Photonics, 2019, 6, 3174-3179.	6.6	6
7	Influence of a Gold Seed in Transparent V ₂ O<italic> _x </italic> </italic> </italic> Selective Contacts for Dopant-Free Silicon Solar Cells. IEEE Journal of Photovoltaics, 2019, 9, 72-77.	2.5	6
8	Interdigitated back-contacted crystalline silicon solar cells with low-temperature dopant-free selective contacts. Journal of Materials Chemistry A, 2018, 6, 3977-3985.	10.3	48
9	3D simulations of interdigitated back-contacted crystalline silicon solar cells on thin substrates. Solar Energy, 2018, 167, 242-250.	6.1	8
10	Impact of c-Si Surface Passivating Layer Thickness on n ⁺ Laser-Doped Contacts Based on Silicon Carbide Films. IEEE Journal of Photovoltaics, 2018, 8, 976-981.	2.5	5
11	Transport mechanisms in silicon heterojunction solar cells with molybdenum oxide as a hole transport layer. Solar Energy Materials and Solar Cells, 2018, 185, 61-65.	6.2	41
12	Effects of photon reabsorption phenomena in confocal micro-photoluminescence measurements in crystalline silicon. Journal of Applied Physics, 2017, 121, .	2.5	8
13	V ₂ O _x -based hole-selective contacts for c-Si interdigitated back-contacted solar cells. Journal of Materials Chemistry A, 2017, 5, 9182-9189.	10.3	94
14	Recombination processes in passivated boron-implanted black silicon emitters. Journal of Applied Physics, 2017, 121, .	2.5	20
15	Superior performance of V2O5 as hole selective contact over other transition metal oxides in silicon heterojunction solar cells. Solar Energy Materials and Solar Cells, 2017, 168, 221-226.	6.2	124
16	Cost-effective cleaning solutions based on H <inf>2</inf> 222 mixtures for ALD Al <inf>2</inf> 0 <inf>3</inf> 30 <inf>0<inf>0<inf>0<inf>0<inf>0<inf>0<inf>0<inf>0<inf>0<inf>0<inf>0<inf>0<inf>0<inf>0<inf>0<inf>0<inf>0<inf>0<inf>0<inf>0<inf>0<inf>0<inf>0<inf>0<inf>0<inf>0<inf>0<inf>0<inf>0<inf>0<inf>0<inf>0<inf>0<inf>0<inf>0<inf>0<inf>0<inf>0<inf>0<inf>0<inf>0<inf>0<inf>0<inf>0<inf>0<inf>0<inf>0<inf>0<inf>0<inf>0<inf>0<inf>0<inf>0<inf>0<inf>0<inf>0<inf>0<inf>0<inf>0<inf>0<inf>0<inf>0<inf>0<inf>0<inf>0<inf>0<inf>0<inf>0<inf>0<inf>0<inf>0<inf>0<inf>0<inf>0<inf>0<inf>0<inf>0<inf>0<inf>0<inf>0<inf>0<inf>0<inf>0<inf>0<inf>0<inf>0<inf>0<inf>0<inf>0<inf>0<inf>0<inf>0<inf>0<inf>0<inf>0<inf>0<inf>0<inf>0<inf>0<inf>0<inf>0<inf>0<inf>0<inf>0<inf>0<inf>0<inf>0<inf>0<inf>0<inf>0<inf>0<inf>0<inf>0<inf>0<inf>0<inf>0<inf>0<inf>0<inf>0<inf>0<inf>0<inf>0<inf>0<inf>0<inf>0<inf>0<inf>0<inf>0<inf>0<inf>0<inf>0<inf>0<inf>0<inf>0<inf>0<inf>0<inf>0<inf>0<inf>0<inf>0<inf>0<inf>0<inf>0<inf>0<inf>0<inf>0<inf>0<inf>0<inf>0<inf>0<inf>0<inf>0<inf>0<inf>0<inf&< td=""><td></td><td>0</td></inf&<></inf></inf></inf></inf></inf></inf></inf></inf></inf></inf></inf></inf></inf></inf></inf></inf></inf></inf></inf></inf></inf></inf></inf></inf></inf></inf></inf></inf></inf></inf></inf></inf></inf></inf></inf></inf></inf></inf></inf></inf></inf></inf></inf></inf></inf></inf></inf></inf></inf></inf></inf></inf></inf></inf></inf></inf></inf></inf></inf></inf></inf></inf></inf></inf></inf></inf></inf></inf></inf></inf></inf></inf></inf></inf></inf></inf></inf></inf></inf></inf></inf></inf></inf></inf></inf></inf></inf></inf></inf></inf></inf></inf></inf></inf></inf></inf></inf></inf></inf></inf></inf></inf></inf></inf></inf></inf></inf></inf></inf></inf></inf></inf></inf></inf></inf></inf></inf></inf></inf></inf></inf></inf></inf></inf></inf></inf></inf></inf></inf></inf></inf></inf></inf></inf></inf></inf></inf></inf></inf></inf></inf></inf></inf></inf></inf></inf></inf></inf></inf></inf></inf></inf></inf></inf>		0
17	Fully low temperature interdigitated back-contacted c-Si(n) solar cells based on laser-doping from dielectric stacks. Solar Energy Materials and Solar Cells, 2017, 169, 107-112.	6.2	12
18	Interdigitated back contacted c-Si(p) solar cells with photovoltaic efficiencies beyond 22%. , 2017, , .		2

#	Article	IF	CITATIONS
19	Silicon nitride layers for DopLa-IBC solar cells. , 2017, , .		О
20	Origin of passivation in hole-selective transition metal oxides for crystalline silicon heterojunction solar cells. Journal of Materials Research, 2017, 32, 260-268.	2.6	129
21	Silicon solar cells with heterojunction emitters and laser processed base contacts. Energy Procedia, 2017, 124, 604-611.	1.8	4
22	Passivating/hole-selective contacts based on V2O5/SiOx stacks deposited at ambient temperature. Energy Procedia, 2017, 124, 584-592.	1.8	33
23	Controlling Plateau-Rayleigh instabilities during the reorganization of silicon macropores in the Silicon Millefeuille process. Scientific Reports, 2017, 7, 7233.	3.3	10
24	Front contact optimization of industrial scale CIGS solar cells for low solar concentration using 2D physical modeling. Renewable Energy, 2017, 101, 90-95.	8.9	9
25	High efficiency ITO-free hybrid solar cell using highly conductive PEDOT:PSS with co-solvent and surfactant treatments. Materials Letters, 2017, 186, 165-167.	2.6	13
26	Mechanical properties of Al2O3 inverse opals by means of nanoindentation. Journal Physics D: Applied Physics, 2016, 49, 455303.	2.8	6
27	"Cold―Process for IBC c-Si Solar Cells Fabrication. Energy Procedia, 2016, 92, 652-660.	1.8	6
28	Back Junction n-type Silicon Heterojunction Solar Cells with V2O5 Hole-selective Contact. Energy Procedia, 2016, 92, 633-637.	1.8	25
29	Long-term Stability of Al2O3 Passivated Black Silicon. Energy Procedia, 2016, 92, 341-346.	1.8	15
30	DopLa Solar Cells with Texturized Front Surface. Energy Procedia, 2016, 92, 949-955.	1.8	3
31	IBC c-Si(n) Solar Cells Based on Laser Doping Processing for Selective Emitter and Base Contact Formation. Energy Procedia, 2016, 92, 956-961.	1.8	9
32	Influence of Amorphous Silicon Carbide Intermediate Layer in the Back-Contact Structure of Cu ₂ ZnSnSe ₄ Solar Cells. IEEE Journal of Photovoltaics, 2016, 6, 1327-1332.	2.5	8
33	PEDOT:PSS as an Alternative Hole Selective Contact for ITO-Free Hybrid Crystalline Silicon Solar Cell. IEEE Journal of Photovoltaics, 2016, 6, 934-939.	2.5	25
34	Microscale Characterization of Surface Recombination at the Vicinity of Laser-Processed Regions in c-Si Solar Cells. IEEE Journal of Photovoltaics, 2016, 6, 426-431.	2.5	6
35	From random to order: Colloidal crystals on non-flat surfaces. Microelectronic Engineering, 2016, 153, 20-23.	2.4	0
36	Transition metal oxides as hole-selective contacts in silicon heterojunctions solar cells. Solar Energy Materials and Solar Cells, 2016, 145, 109-115.	6.2	328

#	Article	IF	CITATIONS
37	Base contacts and selective emitters processed by laser doping technique for p-type IBC c-Si solar cells. Energy Procedia, 2015, 77, 752-758.	1.8	6
38	Highâ€efficiency black silicon interdigitated back contacted solar cells on pâ€type and nâ€type câ€Si substrates. Progress in Photovoltaics: Research and Applications, 2015, 23, 1448-1457.	8.1	35
39	Characterization of Transition Metal Oxide/Silicon Heterojunctions for Solar Cell Applications. Applied Sciences (Switzerland), 2015, 5, 695-705.	2.5	92
40	Microscale Spatially Resolved Characterization of Highly Doped Regions in Laser-Fired Contacts for High-Efficiency Crystalline Si Solar Cells. IEEE Journal of Photovoltaics, 2015, 5, 545-551.	2.5	15
41	High efficiency interdigitated back-contact c-Si(p) solar cells. , 2015, , .		3
42	Study of the Surface Recombination Velocity for Ultraviolet and Visible Laser-Fired Contacts Applied to Silicon Heterojunction Solar Cells. IEEE Journal of Photovoltaics, 2015, 5, 1006-1013.	2.5	4
43	Analysis of the Atomic Layer Deposited Al2O3 field-effect passivation in black silicon. Solar Energy Materials and Solar Cells, 2015, 142, 29-33.	6.2	61
44	Experimental determination of base resistance contribution for point-like contacted c-Si solar cells using impedance spectroscopy analysis. Solar Energy Materials and Solar Cells, 2015, 141, 350-355.	6.2	3
45	Emitter formation using laser doping technique on n- and p-type c-Si substrates. Applied Surface Science, 2015, 336, 182-187.	6.1	8
46	Black silicon solar cells with interdigitated back-contacts achieve 22.1% efficiency. Nature Nanotechnology, 2015, 10, 624-628.	31.5	512
47	Low Surface Recombination in Silicon-Heterojunction Solar Cells With Rear Laser-Fired Contacts From Aluminum Foils. IEEE Journal of Photovoltaics, 2015, 5, 805-811.	2.5	15
48	Laser contact through electrosprayed alumina inverse opals on silicon. Microelectronic Engineering, 2015, 145, 29-31.	2.4	5
49	3D TCAD modeling of laser processed c-Si solar cells. , 2015, , .		1
50	TCO-free Low-temperature p+ Emitters for Back-junction c-Si Solar Cells. Energy Procedia, 2015, 77, 296-303.	1.8	2
51	Straightforward determination of the effective mobility-lifetime product of small molecule organic solar cells. , 2015, , .		0
52	Three-dimensional metallo-dielectric selective thermal emitters with high-temperature stability for thermophotovoltaic applications. Solar Energy Materials and Solar Cells, 2015, 134, 22-28.	6.2	43
53	Numerical simulations of rear point-contacted solar cells on 2.2 Ωcm p-type c-Si substrates. Progress in Photovoltaics: Research and Applications, 2015, 23, 69-77.	8.1	13
54	Laser Induced Forward Transfer for front contact improvement in silicon heterojunction solar cells. Applied Surface Science, 2015, 336, 89-95.	6.1	13

#	Article	IF	CITATIONS
55	Influence of the density of states on the open-circuit voltage in small-molecule solar cells. Organic Electronics, 2014, 15, 2553-2560.	2.6	14
56	On the observation of electron-hole liquid luminescence under low excitation in Al2O3-passivated c-Si wafers. Physica Status Solidi - Rapid Research Letters, 2014, 8, 943-947.	2.4	4
57	All-silicon spherical-Mie-resonator photodiode with spectral response in the infrared region. Nature Communications, 2014, 5, 3440.	12.8	75
58	Compositional influence on the electrical performance of zinc indium tin oxide transparent thin-film transistors. Thin Solid Films, 2014, 555, 107-111.	1.8	5
59	Rear Contact Pattern Optimization based on 3D Simulations for IBC Solar Cells with Point-like Doped Contacts. Energy Procedia, 2014, 55, 47-52.	1.8	11
60	c-Si Solar Cells based on Laser-processed Dielectric Films. Energy Procedia, 2014, 55, 255-264.	1.8	10
61	Restraints in low dimensional organic semiconductor devices at high current densities. Organic Electronics, 2014, 15, 211-215.	2.6	1
62	Recovery of Indium-tin-oxide/silicon Heterojunction Solar Cells by Thermal Annealing. Energy Procedia, 2014, 44, 3-9.	1.8	7
63	Optimization of Laser Processes for Local Rear Contacting of Passivated Silicon Solar Cells. Energy Procedia, 2014, 44, 234-243.	1.8	6
64	Laser processing of Al ₂ O ₃ /aâ€SiC <i>_x</i> :H stacks: a feasible solution for the rear surface of highâ€efficiency pâ€type câ€Si solar cells. Progress in Photovoltaics: Research and Applications, 2013, 21, 1171-1175.	8.1	28
65	Progress in silicon heterojunction solar cell fabrication with rear laser-fired contacts. , 2013, , .		3
66	New laser-based approaches to improve the passivation and rear contact quality in high efficiency crystalline silicon solar cells. Proceedings of SPIE, 2013, , .	0.8	1
67	Boron diffused emitters passivated with Al <inf>2</inf> O <inf>3</inf> films., 2013,,.		O
68	"Silicon millefeuille― From a silicon wafer to multiple thin crystalline films in a single step. Applied Physics Letters, 2013, 102, .	3.3	18
69	Analysis of the dynamic short-circuit resistance in organic bulk-heterojunction solar cells: relation to the charge carrier collection efficiency. Organic Electronics, 2013, 14, 1643-1648.	2.6	12
70	An IBC solar cell for the UPC CubeSat-1 mission. , 2013, , .		1
71	Surface passivation and optical characterization of Al2O3/a-SiCx stacks on c-Si substrates. Beilstein Journal of Nanotechnology, 2013, 4, 726-731.	2.8	28
72	Laser Processes for Contact Optimization in c-Si Solar Cells. , 2013, , .		1

#	Article	IF	CITATIONS
73	Determination of the Density of States on N-type Ptcdi-c13 Organic Thin-film Semiconductor. Materials Research Society Symposia Proceedings, 2012, 1435, 36.	0.1	O
74	Influence of wavelength on laser doping and laser-fired contact processes for c-Si solar cells. Proceedings of SPIE, 2012, , .	0.8	3
75	Organic metal–organic semiconductor blended contacts in single crystal field-effect transistors. Journal of Materials Chemistry, 2012, 22, 16011.	6.7	14
76	Comparison between the density-of-states of picene transistors measured in air and under vacuum. Synthetic Metals, 2012, 161, 2554-2557.	3.9	9
77	p-type c-Si solar cells based on rear side laser processing of Al2O3/SiCx stacks. Solar Energy Materials and Solar Cells, 2012, 106, 80-83.	6.2	39
78	Parameterization of local laser doping and laser-fired contacts for high efficiency c-Si solar cells. Physics Procedia, 2012, 39, 693-701.	1.2	4
79	Evidence of intrinsic ambipolar charge transport in a high band gap organic semiconductor. Journal of Materials Chemistry, 2012, 22, 345-348.	6.7	11
80	Emissive properties of SiO2 thin films through photonic windows. Applied Physics Letters, 2012, 100, .	3.3	5
81	Laserâ€fired contact optimization in c‧i solar cells. Progress in Photovoltaics: Research and Applications, 2012, 20, 173-180.	8.1	45
82	Electronic and structural characterisation of a tetrathiafulvalene compound as a potential candidate for ambipolar transport properties. CrystEngComm, 2011, 13, 6597.	2.6	19
83	Laser fired contacts applied to the rear surface of heterojunction silicon solar cells. Solar Energy Materials and Solar Cells, 2011, 95, 3119-3123.	6.2	7
84	Simultaneous gettering and emitter formation in multicrystalline-Si wafers by annealing phosphorus doped amorphous silicon compounds. Applied Physics Letters, 2011, 98, 022102.	3.3	1
85	Crystalline silicon solar cells beyond 20% efficiency. , 2011, , .		7
86	Interchain and intrachain emission branching in polymer light-emitting diode doped by organic molecules. Applied Physics Letters, 2010, 96, 033301.	3.3	9
87	3D metallo-dielectric structures combining electrochemical and electroplating techniques. Microelectronic Engineering, 2010, 87, 1458-1462.	2.4	9
88	Density-of-states in pentacene from the electrical characteristics of thin-film transistors. Organic Electronics, 2010, 11, 1333-1337.	2.6	39
89	Development of LASER fired contacts on silicon heterojunction solar cells for the application to rear contact structures. Physica Status Solidi C: Current Topics in Solid State Physics, 2010, 7, NA-NA.	0.8	2
90	Thermal emission of macroporous silicon chirped photonic crystals. Optics Letters, 2010, 35, 3348.	3.3	11

#	Article	IF	CITATIONS
91	A monolithic micro fuel cell based on a functionalized porous silicon membrane. , 2010, , .		6
92	Optical stability of small-molecule thin-films determined by Photothermal Deflection Spectroscopy. Materials Research Society Symposia Proceedings, 2009, 1154, 1.	0.1	3
93	N-type PTCDl–C13H27 thin-film transistors deposited at different substrate temperature. Thin Solid Films, 2009, 517, 6271-6274.	1.8	29
94	New approaches for the fabrication of photonic structures of nonlinear optical materials. Journal of Luminescence, 2009, 129, 1441-1447.	3.1	3
95	Development of laser-fired contacts for amorphous silicon layers obtained by Hot-Wire CVD. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2009, 159-160, 23-26.	3.5	2
96	Optoelectronic properties of CuPc thin films deposited at different substrate temperatures. Journal Physics D: Applied Physics, 2009, 42, 145102.	2.8	45
97	N-type emitters passivation through antireflective phosphorus doped a-SiC <inf>x</inf> N <inf>y</inf> :H(n) stacks. , 2009, , .		0
98	Advances in a baseline process towards high efficiency c-Si solar cell fabrication., 2009,,.		0
99	Synthesis of Ordered Polymer Micro and Nanostructures Via Porous Templates. , 2009, , .		3
100	Optical properties of 3D macroporous silicon structures. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2008, 149, 275-280.	3.5	12
101	Characterization of 2D macroporous silicon photonic crystals: Improving the photonic band identification in angular-dependent reflection spectroscopy in the mid-IR. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2008, 147, 179-182.	3.5	7
102	Recombination rates in heterojunction silicon solar cells analyzed by impedance spectroscopy at forward bias and under illumination. Solar Energy Materials and Solar Cells, 2008, 92, 505-509.	6.2	66
103	Progress in a-Si:H/c-Si heterojunction emitters obtained by Hot-Wire CVD at 200°C. Thin Solid Films, 2008, 516, 761-764.	1.8	12
104	Mid-IR characterization of photonic bands in 2D photonic crystals on silicon. Thin Solid Films, 2008, 516, 8059-8063.	1.8	5
105	Very low surface recombination velocity of crystalline silicon passivated by phosphorusâ€doped ⟨i⟩aâ€6ic⟨sub⟩x⟨ sub⟩N⟨sub⟩y⟨ sub⟩:H(n)⟨ i⟩ alloys. Progress in Photovoltaics: Research and Applications, 2008, 16, 123-127.	8.1	15
106	Polymer microfibers obtained using porous silicon templates. Physica Status Solidi (A) Applications and Materials Science, 2008, 205, 2437-2440.	1.8	13
107	Colloidal Crystal Wires. Advanced Materials, 2008, 20, 2315-2318.	21.0	58
108	Inside Front Cover: Colloidal Crystal Wires (Adv. Mater. 12/2008). Advanced Materials, 2008, 20, NA-NA.	21.0	0

#	Article	IF	Citations
109	Macroporous silicon: A versatile material for 3D structure fabrication. Sensors and Actuators A: Physical, 2008, 141, 662-669.	4.1	41
110	Low temperature back-surface-field contacts deposited by hot-wire CVD for heterojunction solar cells. Thin Solid Films, 2008, 516, 6782-6785.	1.8	5
111	Semiconducting P3HT microstructures: fibres and tubes obtained from macroporous silicon template. Physica Status Solidi - Rapid Research Letters, 2008, 2, 206-208.	2.4	19
112	First use of macroporous silicon loaded with catalyst film for a chemical reaction: A microreformer for producing hydrogen from ethanol steam reforming. Journal of Catalysis, 2008, 255, 228-233.	6.2	74
113	Templated growth of tungsten oxide micro/nanostructures using aerosol assisted chemical vapour deposition. Materials Letters, 2008, 62, 4582-4584.	2.6	26
114	Integrating multi-unit electrophysiology and plastic culture dishes for network neuroscience. Lab on A Chip, 2008, 8, 1896.	6.0	30
115	Very low recombination phosphorus emitters for high efficiency crystalline silicon solar cells. Semiconductor Science and Technology, 2008, 23, 125032.	2.0	11
116	Improving selective thermal emission properties of three-dimensional macroporous silicon through porosity tuning. Applied Physics Letters, 2008, 93, 081913.	3.3	13
117	Increased conductivity of a hole transport layer due to oxidation by a molecular nanomagnet. Journal of Applied Physics, 2008, 103, .	2.5	6
118	Infrared thermal emission in macroporous silicon three-dimensional photonic crystals. Applied Physics Letters, 2007, 91 , .	3.3	9
119	Reflection Analysis of 2D-photonic Crystal Lattice Using Bragg-diffraction phenomena. , 2007, , .		3
120	Optical study of polymer infiltration into porous Si based structures. , 2007, , .		3
121	Post-etching shaping of macroporous silicon. Proceedings of SPIE, 2007, , .	0.8	1
122	Towards more complex shapes of macroporous silicon. , 2007, , .		2
123	Fixed charge density in dielectrics deposited on c-Si using space charge region dominated lifetime measurements. Journal of Applied Physics, 2007, 101, .	2.5	2
124	c-Si surface passivation for photovoltaic applications by means of antireflective amorphous silicon carbide layers. , 2007, , .		4
125	Growth of plasmonic gold nanostructures by electron beam induced deposition. Applied Physics Letters, 2007, 91, 121112.	3.3	50
126	Crystalline silicon surface passivation by amorphous silicon carbide films. Solar Energy Materials and Solar Cells, 2007, 91, 174-179.	6.2	14

#	Article	IF	CITATIONS
127	Fullerene thin-film transistors fabricated on polymeric gate dielectric. Thin Solid Films, 2007, 515, 7667-7670.	1.8	8
128	Improving the efficiency of light-emitting diode based on a thiophene polymer containing a cyano group. Organic Electronics, 2007, 8, 641-647.	2.6	11
129	Investigation of the formation of silicon nanocrystals by annealing of amorphous SiCx/c-Si structures. Physica E: Low-Dimensional Systems and Nanostructures, 2007, 38, 36-39.	2.7	O
130	Development of microstructured zeolite films as highly accessible catalytic coatings for microreactors. Journal of Catalysis, 2007, 250, 190-194.	6.2	16
131	Tuning the shape of macroporous silicon. Physica Status Solidi (A) Applications and Materials Science, 2007, 204, 3237-3242.	1.8	21
132	Photodiodes based on fullerene semiconductor. Thin Solid Films, 2007, 515, 7675-7678.	1.8	14
133	Investigation of the Surface Passivation of P+-Type Si Emitters by PECVD Silicon Carbide Films., 2006,,.		1
134	Characterization of bifacial heterojunction silicon solar cells obtained by hot-wire CVD. Journal of Non-Crystalline Solids, 2006, 352, 1953-1957.	3.1	5
135	Copper phthalocyanine thin-film transistors with polymeric gate dielectric. Journal of Non-Crystalline Solids, 2006, 352, 1778-1782.	3.1	58
136	Visible light emission from macroporous Si. Optical Materials, 2006, 29, 262-267.	3.6	10
137	Study of a thiophene-based polymer for optoelectronic applications. Thin Solid Films, 2006, 497, 16-19.	1.8	29
138	Electronic properties of intrinsic and doped amorphous silicon carbide films. Thin Solid Films, 2006, 511-512, 290-294.	1.8	16
139	Bifacial heterojunction silicon solar cells by hot-wire CVD with open-circuit voltages exceeding 600 mV. Thin Solid Films, 2006, 511-512, 415-419.	1.8	21
140	Effect of buffer layer on minority carrier lifetime and series resistance of bifacial heterojunction silicon solar cells analyzed by impedance spectroscopy. Thin Solid Films, 2006, 514, 254-257.	1.8	31
141	A Two-Dimensional KTiOPO4 Photonic Crystal Grown Using a Macroporous Silicon Template. Advanced Materials, 2006, 18, 2220-2225.	21.0	9
142	Comparison of (n+) a-Si:H $/$ (p) c-Si Heterojunction Emitters using a-Si:H Films Deposited by PECVD or HWCVD. , 2006, , .		2
143	Growth of 2D KTP photonic crystals for efficient second order nonlinear optical processes., 2006,,.		0
144	n-type emitter surface passivation in c-Si solar cells by means of antireflective amorphous silicon carbide layers. Journal of Applied Physics, 2006, 100, 073703.	2.5	9

#	Article	IF	CITATIONS
145	Comprehensive study of a novel thiophene-based polymer. , 2005, , .		O
146	Influence of the fabrication process on the light emission of macroporous silicon. , 2005, , .		2
147	Two-dimensional photonic crystals of rods with a dielectric cladding. , 2005, , .		3
148	Fabrication of silicon oxide microneedles from macroporous silicon. Sensors and Actuators B: Chemical, 2005, 109, 135-140.	7.8	58
149	Optoelectronic devices based on evaporated pentacene films. Solar Energy Materials and Solar Cells, 2005, 87, 567-573.	6.2	32
150	Phosphorus-diffused silicon solar cell emitters with plasma enhanced chemical vapor deposited silicon carbide. Solar Energy Materials and Solar Cells, 2005, 87, 667-674.	6.2	12
151	Fabrication of two- and three-dimensional photonic crystals by electrochemical etching of silicon. Physica Status Solidi C: Current Topics in Solid State Physics, 2005, 2, 3104-3107.	0.8	27
152	High-aspect-ratio silicon dioxide pillars. Physica Status Solidi (A) Applications and Materials Science, 2005, 202, 1634-1638.	1.8	27
153	Characterization of a-Si:Hâ^•c-Si interfaces by effective-lifetime measurements. Journal of Applied Physics, 2005, 98, 093711.	2.5	49
154	Effect of amorphous silicon carbide layer thickness on the passivation quality of crystalline silicon surface. Applied Physics Letters, 2005, 87, 202109.	3.3	19
155	Crystalline silicon surface passivation with amorphous SiCx:H films deposited by plasma-enhanced chemical-vapor deposition. Journal of Applied Physics, 2005, 98, 114912.	2.5	24
156	Flexible Pentacene/PMMA Thin-Film Transistors Fabricated on Aluminium Foil Substrates. Materials Research Society Symposia Proceedings, 2005, 871, 1.	0.1	2
157	Transverse Electrical Transport in Pentacene Photodiodes. Materials Research Society Symposia Proceedings, 2005, 871, 1.	0.1	0
158	Effective lifetime measurements on phosphorus emitters prepared with planar diffusion sources. , 2005, , .		0
159	Improvement of crystalline silicon surface passivation by hydrogen plasma treatment. Applied Physics Letters, 2004, 84, 1474-1476.	3.3	35
160	Effects of symmetry reduction in two-dimensional square and triangular lattices. Physical Review B, 2004, 69, .	3.2	46
161	Analysis of photonic band gaps in two-dimensional photonic crystals with rods covered by a thin interfacial layer. Physical Review B, 2004, 70, .	3.2	23
162	IR-study of a-SiCx:H and a-SiCxNy:H films for c-Si surface passivation. Thin Solid Films, 2004, 451-452, 340-344.	1.8	41

#	Article	IF	CITATIONS
163	Pentacene thin-film transistors with polymeric gate dielectric. Organic Electronics, 2004, 5, 67-71.	2.6	125
164	Electrical characterization of pentacene thin-film transistors with polymeric gate dielectric. Synthetic Metals, 2004, 146, 355-358.	3.9	26
165	Pentacene thin-film transistors on polymeric gate dielectric: device fabrication and electrical characterization. Journal of Non-Crystalline Solids, 2004, 338-340, 617-621.	3.1	39
166	Sub-wavelength patterning of the optical near-field. Optics Express, 2004, 12, 282.	3.4	17
167	Surface passivation of crystalline silicon by Cat-CVD amorphous and nanocrystalline thin silicon films. Thin Solid Films, 2003, 430, 270-273.	1.8	19
168	Larger absolute photonic band gap in two-dimensional air–silicon structures. Physica E: Low-Dimensional Systems and Nanostructures, 2003, 16, 580-585.	2.7	21
169	Pentacene thin-films obtained by thermal evaporation in high vacuum. Thin Solid Films, 2003, 427, 367-370.	1.8	51
170	Annealing effects on the conduction mechanisms of p+-amorphous- Si0.8C0.2:H/n-crystalline-Si diodes. Journal of Applied Physics, 2003, 94, 2622-2626.	2.5	28
171	Surface passivation ofn-type crystalline Si by plasma-enhanced-chemical-vapor-deposited amorphous SiCx:H and amorphous SiCxNy:H films. Applied Physics Letters, 2002, 81, 4461-4463.	3.3	51
172	Characterization of a-SiC _x :H Films for c-Si Surface Passivation. Materials Research Society Symposia Proceedings, 2002, 715, 2451.	0.1	6
173	Electronic transport in low temperature nanocrystalline silicon thin-film transistors obtained by hot-wire CVD. Journal of Non-Crystalline Solids, 2002, 299-302, 400-404.	3.1	8
174	Thin-film transistors with polymorphous silicon active layer. Journal of Non-Crystalline Solids, 2002, 299-302, 1345-1350.	3.1	11
175	Surface passivation of p-type crystalline Si by plasma enhanced chemical vapor deposited amorphous SiCx:H films. Applied Physics Letters, 2001, 79, 2199-2201.	3.3	129
176	Analysis of bias stress on thin-film transistors obtained by Hot-Wire Chemical Vapour Deposition. Thin Solid Films, 2001, 383, 307-309.	1.8	22
177	Stability of hydrogenated nanocrystalline silicon thin-film transistors. Thin Solid Films, 2001, 395, 335-338.	1.8	29
178	Effects of thermal annealing in the properties of PECVD a-SiC layers. Materials Research Society Symposia Proceedings, 2000, 609, 2371.	0.1	0
179	Fabrication and characterization of in situ-doped a-Si0.8C0.2 emitter bipolar transistors. Solid-State Electronics, 2000, 44, 1543-1548.	1.4	5
180	Microcrystalline silicon thin film transistors obtained by hot-wire CVD. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2000, 69-70, 526-529.	3.5	15

#	Article	IF	CITATIONS
181	Thin film transistors obtained by hot wire CVD. Journal of Non-Crystalline Solids, 2000, 266-269, 1304-1309.	3.1	24
182	Analysis of conduction mechanisms in annealed n-Silâ^xCx:H/p-crystalline Si heterojunction diodes for different doping concentrations. Journal of Applied Physics, 1999, 85, 1216-1221.	2.5	35
183	In situ-doped amorphous Si/sub 0.8/C/sub 0.2/ emitter bipolar transistors. IEEE Electron Device Letters, 1999, 20, 592-594.	3.9	9
184	Distribution of recombination currents in the space charge region of heterostructure bipolar devices. IEEE Transactions on Electron Devices, 1998, 45, 54-61.	3.0	4
185	Annealed Si _{1-x} C _x Emitter Silicon Heterojunction Bipolar Transistors. Materials Science Forum, 1998, 264-268, 1455-1458.	0.3	4
186	Current transport mechanisms in n-type amorphous silicon-carbon on p-type crystalline silicon (a-:H/c-Si) heterojunction diodes. Semiconductor Science and Technology, 1998, 13, 1148-1153.	2.0	10
187	Steadyâ€State and Transient Behavior of Thickâ€Film Tin Oxide Sensors in the Presence of Gas Mixtures. Journal of the Electrochemical Society, 1998, 145, 1772-1779.	2.9	18
188	An accurate transient model for BiCMOS gate optimization. International Journal of Electronics, 1997, 82, 503-514.	1.4	1
189	Electrical properties of PECVD amorphous siliconâ€"carbon alloys from amorphousâ€"crystalline heterojunctions. Diamond and Related Materials, 1997, 6, 1555-1558.	3.9	7
190	Conductance-transient analysis of thick-film tin oxide gas sensors under successive gas-injection steps. Measurement Science and Technology, 1997, 8, 1133-1138.	2.6	11
191	Space charge recombination in Pî—,N junctions with a discrete and continuous trap distribution. Solid-State Electronics, 1997, 41, 17-23.	1.4	24
192	Analytical modelling of BJT neutral base region under variable injection conditions. Solid-State Electronics, 1997, 41, 1177-1180.	1.4	4
193	Electrical model for amorphous/crystalline heterojunction silicon diodes (n a-Si:H/p c-Si). Semiconductor Science and Technology, 1996, 11, 1209-1213.	2.0	25
194	Analysis of the conductance transient in thick-film tin oxide gas sensors. Sensors and Actuators B: Chemical, 1996, 31, 175-180.	7.8	63
195	Electrical characterization ofnâ€amorphous/pâ€crystalline silicon heterojunctions. Journal of Applied Physics, 1996, 79, 8493-8497.	2.5	55
196	Superposition solutions for emitter quantum efficiency. Solid-State Electronics, 1995, 38, 252-254.	1.4	0
197	Bipolar transistor vertical scaling framework. Solid-State Electronics, 1995, 38, 1367-1371.	1.4	0
198	A compact charge ratio expression for the emitter delay of polysilicon emitter bipolar transistors. IEEE Transactions on Electron Devices, 1994, 41, 454-455.	3.0	4

#	Article	IF	CITATIONS
199	Superposition solution for minority carrier current in the emitter of bipolar devices. Solid-State Electronics, 1992, 35, 529-533.	1.4	9
200	The impurity dose, a useful parameter for emitter design. Solid-State Electronics, 1991, 34, 1001-1005.	1.4	6
201	Spectral response degradation of bifacial silicon solar cells. Solar Cells, 1991, 31, 47-56.	0.6	O
202	Performance analysis of bifacial silicon solar cells in a space environment. Solar Cells, 1990, 29, 303-318.	0.6	6
203	Comments on the use of the surface recombination velocity concept. Solid-State Electronics, 1990, 33, 477-484.	1.4	24
204	Iterative solutions for highly doped emitters under illumination. IEE Proceedings, Part G: Circuits, Devices and Systems, 1989, 136, 126.	0.2	0
205	Radiation damage evaluation on AlGaAs/GaAs solar cells. IEEE Transactions on Nuclear Science, 1988, 35, 1067-1071.	2.0	3
206	GaAlAs/gaAs Solar Cells. Bulk Graded Band Gap Structures, an Optimization. , 1987, , 895-899.		0
207	Réalisation et caractérisation d'un transistor à effet de champ JFET au GaAs en vue de son intégration avec une photodiode. Revue De Physique Appliquée, 1987, 22, 77-82.	0.4	1
208	AlGaAsî—,GaAs solar cell delopment: Electrical analysis and prospects for space application. Solar Cells, 1986, 18, 163-170.	0.6	1
209	Series resistance in polysilicon contacted solar cells. , 0, , .		2
210	Study and fabrication of amorphous and microcrystalline silicon-carbon alloys for microelectronic applications. , 0 , , .		0
211	Injection system based on silicon oxide microneedles. , 0, , .		0
212	Organic photovoltaic solar cells based on MEH-PPV/PCBM blend. , 0, , .		0
213	Two- and three-dimensional microstructures produced by electrochemical etching of silicon. , 0, , .		1
214	Properties of oxidized porous silicon as insulator material for RF applications. , 0, , .		5
215	Heterojunction silicon solar cells obtained by hot-wire CVD at low temperature. , 0, , .		0
216	Characterization of industrial p-type CZ silicon wafers passivated with a-SiC/sub x/:H films. , 0, , .		0

#	Article	IF	CITATIONS
217	Optical and electrical characteristics of LEDs based on a single organic layer. , 0, , .		1
218	Pentacene organic thin-film transistors fabricated in a nonlithographic process. , 0, , .		O
219	Influence of RF power on c-Si surface passivation by amorphous a-SiC/sub x/:H layers deposited by PECVD., 0,,.		O
220	Organic electronic devices: overview and future trends. , 0, , .		2