Kobi Rosenblum

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9492255/publications.pdf

Version: 2024-02-01

117571 98753 5,056 68 34 citations h-index papers

g-index 77 77 77 5228 docs citations times ranked citing authors all docs

67

#	Article	IF	CITATIONS
1	Brain-Derived Neurotrophic Factor Induces Long-Term Potentiation in Intact Adult Hippocampus: Requirement for ERK Activation Coupled to CREB and Upregulation of <i>Arc < /i>Synthesis. Journal of Neuroscience, 2002, 22, 1532-1540.</i>	1.7	699
2	elF2α Phosphorylation Bidirectionally Regulates the Switch from Short- to Long-Term Synaptic Plasticity and Memory. Cell, 2007, 129, 195-206.	13.5	437
3	Glycogen synthase kinase-3 inhibition is integral to long-term potentiation. European Journal of Neuroscience, 2007, 25, 81-86.	1.2	300
4	Taste memory: The role of protein synthesis in gustatory cortex. Behavioral and Neural Biology, 1993, 59, 49-56.	2.3	279
5	Specific and Differential Activation of Mitogen-Activated Protein Kinase Cascades by Unfamiliar Taste in the Insular Cortex of the Behaving Rat. Journal of Neuroscience, 1998, 18, 10037-10044.	1.7	276
6	NMDA Receptor and the Tyrosine Phosphorylation of Its 2B Subunit in Taste Learning in the Rat Insular Cortex. Journal of Neuroscience, 1997, 17, 5129-5135.	1.7	217
7	PKR: A Kinase to Remember. Frontiers in Molecular Neuroscience, 2018, 11, 480.	1.4	172
8	ERKI/II Regulation by the Muscarinic Acetylcholine Receptors in Neurons. Journal of Neuroscience, 2000, 20, 977-985.	1.7	161
9	The Role of Extracellular Regulated Kinases I/II in Late-Phase Long-Term Potentiation. Journal of Neuroscience, 2002, 22, 5432-5441.	1.7	144
10	Removal of S6K1 and S6K2 leads to divergent alterations in learning, memory, and synaptic plasticity. Learning and Memory, 2008, 15, 29-38.	0.5	132
11	The roles of protein expression in synaptic plasticity and memory consolidation. Frontiers in Molecular Neuroscience, 2014, 7, 86.	1.4	125
12	Insular cortex neurons encode and retrieve specific immune responses. Cell, 2021, 184, 5902-5915.e17.	13.5	124
13	Molecular Mechanisms of Long-Term Potentiation in the Insular Cortex <i>In Vivo</i> . Journal of Neuroscience, 1999, 19, RC36-RC36.	1.7	103
14	The role of eEF2 pathway in learning and synaptic plasticity. Neurobiology of Learning and Memory, 2013, 105, 100-106.	1.0	94
15	Consolidation and translation regulation: Figure 1 Learning and Memory, 2012, 19, 410-422.	0.5	77
16	Local Inhibition of PERK Enhances Memory and Reverses Age-Related Deterioration of Cognitive and Neuronal Properties. Journal of Neuroscience, 2018, 38, 648-658.	1.7	74
17	elF2 \hat{i} ± controls memory consolidation via excitatory and somatostatin neurons. Nature, 2020, 586, 412-416.	13.7	74
18	Molecular Mechanisms Underlying Memory Consolidation of Taste Information in the Cortex. Frontiers in Behavioral Neuroscience, 2011, 5, 87.	1.0	68

#	Article	IF	CITATIONS
19	Blocking the eIF2α Kinase (PKR) Enhances Positive and Negative Forms of Cortex-Dependent Taste Memory. Journal of Neuroscience, 2013, 33, 2517-2525.	1.7	68
20	Calcium/Calmodulin-Dependent Protein Kinase II and Eukaryotic Elongation Factor 2 Kinase Pathways Mediate the Antidepressant Action of Ketamine. Biological Psychiatry, 2018, 84, 65-75.	0.7	68
21	ERK-dependent PSD-95 induction in the gustatory cortex is necessary for taste learning, but not retrieval. Nature Neuroscience, 2008, 11, 1149-1151.	7.1	66
22	Encoding of Conditioned Taste Aversion in Cortico-Amygdala Circuits. Cell Reports, 2018, 24, 278-283.	2.9	66
23	Biphasic Activation of the mTOR Pathway in the Gustatory Cortex Is Correlated with and Necessary for Taste Learning. Journal of Neuroscience, 2009, 29, 7424-7431.	1.7	65
24	Impaired associative taste learning and abnormal brain activation in kinase-defective eEF2K mice. Learning and Memory, 2012, 19, 116-125.	0.5	61
25	ApoE ε4 is associated with elF2α phosphorylation and impaired learning in young mice. Neurobiology of Aging, 2013, 34, 863-872.	1.5	61
26	Genetic or Pharmacological Reduction of PERK Enhances Cortical-Dependent Taste Learning. Journal of Neuroscience, 2014, 34, 14624-14632.	1.7	57
27	eEF2K/eEF2 Pathway Controls the Excitation/Inhibition Balance and Susceptibility to Epileptic Seizures. Cerebral Cortex, 2017, 27, bhw075.	1.6	57
28	A Novel Role for Extracellular Signal-Regulated Kinase in Maintaining Long-Term Memory-Relevant Excitability Changes. Journal of Neuroscience, 2007, 27, 12584-12589.	1.7	55
29	Activity of Insula to Basolateral Amygdala Projecting Neurons is Necessary and Sufficient for Taste Valence Representation. Journal of Neuroscience, 2019, 39, 9369-9382.	1.7	55
30	Facilitation of taste memory acquisition by experiencing previous novel taste is protein-synthesis dependent. Learning and Memory, 2008, 15, 501-507.	0.5	52
31	PKR Inhibition Rescues Memory Deficit and ATF4 Overexpression in ApoE Îμ4 Human Replacement Mice. Journal of Neuroscience, 2015, 35, 12986-12993.	1.7	51
32	The Insula and Taste Learning. Frontiers in Molecular Neuroscience, 2017, 10, 335.	1.4	51
33	Different signal transduction cascades are activated simultaneously in the rat insular cortex and hippocampus following novel taste learning. European Journal of Neuroscience, 2006, 24, 1434-1442.	1.2	47
34	Tyrosine Phosphorylation of the 2B Subunit of the NMDA Receptor Is Necessary for Taste Memory Formation. Journal of Neuroscience, 2009, 29, 9219-9226.	1.7	45
35	Multi-input Synapses, but Not LTP-Strengthened Synapses, Correlate with Hippocampal Memory Storage in Aged Mice. Current Biology, 2019, 29, 3600-3610.e4.	1.8	39
36	A Novel Role for Protein Synthesis in Long-Term Neuronal Plasticity: Maintaining Reduced Postburst Afterhyperpolarization. Journal of Neuroscience, 2010, 30, 4338-4342.	1.7	30

#	Article	IF	CITATIONS
37	Differential Contribution of Hippocampal Subfields to Components of Associative Taste Learning. Journal of Neuroscience, 2014, 34, 11007-11015.	1.7	30
38	A molecular mechanism underlying gustatory memory trace for an association in the insular cortex. ELife, 2015, 4, e07582.	2.8	29
39	Behavioral interference and C/EBPÂ expression in the insular-cortex reveal a prolonged time period for taste memory consolidation. Learning and Memory, 2006, 13, 571-574.	0.5	27
40	NMDA and Dopamine Converge on the NMDA-Receptor to Induce ERK Activation and Synaptic Depression in Mature Hippocampus. PLoS ONE, 2006, 1, e138.	1.1	27
41	Taste Familiarity Is Inversely Correlated with Arc/Arg3.1 Hemispheric Lateralization. Journal of Neuroscience, 2013, 33, 11734-11743.	1.7	25
42	Expression of Quinone Reductase-2 in the Cortex Is a Muscarinic Acetylcholine Receptor-Dependent Memory Consolidation Constraint. Journal of Neuroscience, 2015, 35, 15568-15581.	1.7	25
43	Memory of Conditioned Taste Aversion Is Erased by Inhibition of PI3K in the Insular Cortex. Neuropsychopharmacology, 2013, 38, 1143-1153.	2.8	24
44	The differential role of cortical protein synthesis in taste memory formation and persistence. Npj Science of Learning, 2016, 1, 16001.	1.5	21
45	eEF2/eEF2K Pathway in the Mature Dentate Gyrus Determines Neurogenesis Level and Cognition. Current Biology, 2020, 30, 3507-3521.e7.	1.8	21
46	Th e Role of Protein Phosphorylation in the Gustatory Cortex and Amygdala During Taste Learning. Experimental Neurobiology, 2012, 21, 37-51.	0.7	20
47	NMDAR-dependent proteasome activity in the gustatory cortex is necessary for conditioned taste aversion. Neurobiology of Learning and Memory, 2016, 130, 7-16.	1.0	19
48	D1 Dopamine Receptor Activation Induces Neuronal eEF2 Pathway-Dependent Protein Synthesis. Frontiers in Molecular Neuroscience, 2020, 13, 67.	1.4	19
49	Dopamine-induced tyrosine phosphorylation of NR2B (Tyr1472) is essential for ERK1/2 activation and processing of novel taste information. Frontiers in Molecular Neuroscience, 2014, 7, 66.	1.4	18
50	Concurrence of High Fat Diet and APOE Gene Induces Allele Specific Metabolic and Mental Stress Changes in a Mouse Model of Alzheimer's Disease. Frontiers in Behavioral Neuroscience, 2016, 10, 170.	1.0	17
51	mAChR-dependent decrease in proteasome activity in the gustatory cortex is necessary for novel taste learning. Neurobiology of Learning and Memory, 2016, 135, 115-124.	1.0	17
52	Virally mediated gene manipulation in the adult CNS. Frontiers in Molecular Neuroscience, 2011, 4, 57.	1.4	16
53	MAPK activation in the hippocampus in vivo is correlated with experimental setting. Neurobiology of Learning and Memory, 2007, 88, 58-64.	1.0	15
54	Olfactoryâ€learning abilities are correlated with the rate by which intrinsic neuronal excitability is modulated in the piriform cortex. European Journal of Neuroscience, 2009, 30, 1339-1348.	1.2	15

#	Article	IF	CITATIONS
55	Measuring mRNA translation in neuronal processes and somata by tRNA-FRET. Nucleic Acids Research, 2020, 48, e32-e32.	6.5	15
56	Parvalbumin interneuron inhibition onto anterior insula neurons projecting to the basolateral amygdala drives aversive taste memory retrieval. Current Biology, 2021, 31, 2770-2784.e6.	1.8	15
57	Persistent ERK activation maintains learning-induced long-lasting modulation of synaptic connectivity. Learning and Memory, 2008, 15, 756-761.	0.5	12
58	Fluid consumption and taste novelty determines transcription temporal dynamics in the gustatory cortex. Molecular Brain, 2016, 9, 13.	1.3	12
59	Insula to mPFC reciprocal connectivity differentially underlies novel taste neophobic response and learning in mice. ELife, 2021, 10, .	2.8	12
60	4E-BP2–dependent translation in parvalbumin neurons controls epileptic seizure threshold. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	10
61	Design and synthesis of novel protein kinase R (PKR) inhibitors. Molecular Diversity, 2016, 20, 805-819.	2.1	8
62	Trace Fear Conditioning: Procedure for Assessing Complex Hippocampal Function in Mice. Bio-protocol, 2018, 8, e2475.	0.2	8
63	Dopamine-Dependent QR2 Pathway Activation in CA1 Interneurons Enhances Novel Memory Formation. Journal of Neuroscience, 2020, 40, 8698-8714.	1.7	7
64	Muscarinic-Dependent miR-182 and QR2 Expression Regulation in the Anterior Insula Enables Novel Taste Learning. ENeuro, 2020, 7, ENEURO.0067-20.2020.	0.9	6
65	Somatostatin Interneurons of the Insula Mediate QR2-Dependent Novel Taste Memory Enhancement. ENeuro, 2021, 8, ENEURO.0152-21.2021.	0.9	5
66	Rho-associated kinase in the gustatory cortex is involved in conditioned taste aversion memory formation but not in memory retrieval or relearning. Neurobiology of Learning and Memory, 2012, 97, 1-6.	1.0	4
67	Editorial. Neurobiology of Learning and Memory, 2015, 124, 1-2.	1.0	1
68	The Role of the Eukaryotic Elongation Factor 2 (eEF2) Pathway in Neuronal Function., 0,, 63-80.		O