
## Zhiping

## List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9492146/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                            | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Synthesis and application of poly (cyclotriphosphazeneâ€resveratrol) microspheres for enhancing<br>flame retardancy of poly (ethylene terephthalate). Polymers for Advanced Technologies, 2022, 33,<br>658-671.    | 1.6 | 8         |
| 2  | Preparation and characterization of polyphosphazene-based flame retardants with different functional groups. Polymer Degradation and Stability, 2022, 196, 109815.                                                 | 2.7 | 13        |
| 3  | Conductive ionogel with underwater adhesion and stability as multimodal sensor for contactless signal propagation and wearable devices. Composites Part B: Engineering, 2022, 232, 109612.                         | 5.9 | 28        |
| 4  | Screen-Printed Carbon Black/Recycled Sericin@Fabrics for Wearable Sensors to Monitor Sweat Loss.<br>ACS Applied Materials & Interfaces, 2022, 14, 11813-11819.                                                     | 4.0 | 13        |
| 5  | Asymmetric composite wound dressing with hydrophobic flexible bandage and tissue-adhesive hydrogel for joints skin wound healing. Composites Part B: Engineering, 2022, 235, 109762.                               | 5.9 | 26        |
| 6  | Effect of weak intermolecular interactions in micro/nanoscale polyphosphazenes and polyethylene terephthalate composites on flame retardancy. Polymers for Advanced Technologies, 2022, 33, 2231-2243.             | 1.6 | 5         |
| 7  | High strength and antiâ€freezing piezoresistive pressure sensor based on a composite gel. Polymers for Advanced Technologies, 2022, 33, 2448-2458.                                                                 | 1.6 | 3         |
| 8  | Morphology-Controlled Synthesis of Polyphosphazene-Based Micro- and Nano-Materials and Their<br>Application as Flame Retardants. Polymers, 2022, 14, 2072.                                                         | 2.0 | 4         |
| 9  | Study on the effect of different dyeing systems on the interaction of multiâ€component reactive dyes by Raman spectroscopy. Coloration Technology, 2021, 137, 520-529.                                             | 0.7 | 4         |
| 10 | Lightweight, Environmentally Friendly, and Underwater Superelastic 3D-Architectured Aerogels for<br>Efficient Protein Separation. ACS Sustainable Chemistry and Engineering, 2021, 9, 11738-11747.                 | 3.2 | 9         |
| 11 | Highly Stable and Nonflammable Hydrated Salt-Paraffin Shape-Memory Gels for Sustainable Building<br>Technology. ACS Sustainable Chemistry and Engineering, 2021, 9, 15442-15450.                                   | 3.2 | 16        |
| 12 | Effect of Sepiolite-Loaded Fe2O3 on Flame Retardancy of Waterborne Polyurethane. Advances in<br>Polymer Technology, 2021, 2021, 1-10.                                                                              | 0.8 | 7         |
| 13 | Real-time monitoring of multicomponent reactive dye adsorption on cotton fabrics by Raman<br>spectroscopy. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2020, 230,<br>118051.            | 2.0 | 6         |
| 14 | Flameâ€retardant poly (ethylene terephthalate) enabled by a novel melamine polyphosphate nanowire.<br>Polymers for Advanced Technologies, 2020, 31, 795-806.                                                       | 1.6 | 13        |
| 15 | A shape-stable phase change composite prepared from cellulose nanofiber/polypyrrole/polyethylene<br>glycol for electric-thermal energy conversion and storage. Chemical Engineering Journal, 2020, 400,<br>125950. | 6.6 | 48        |
| 16 | Polyphosphazene microspheres modified with transition metal hydroxystannate for enhancing the<br>flame retardancy of polyethylene terephthalate. Polymers for Advanced Technologies, 2020, 31,<br>1194-1207.       | 1.6 | 18        |
| 17 | Novel organic-inorganic hybrid polyphosphazene modified manganese hypophosphite shuttles<br>towards the fire retardance and anti-dripping of PET. European Polymer Journal, 2019, 120, 109270.                     | 2.6 | 24        |
| 18 | High-performance textile electrodes for wearable electronics obtained by an improved in situ polymerization method. Chemical Engineering Journal, 2019, 361, 897-907.                                              | 6.6 | 86        |

Zhiping

| #  | Article                                                                                                                                                          | IF                 | CITATIONS                          |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|------------------------------------|
| 19 | Flexible cellulose-based thermoelectric sponge towards wearable pressure sensor and energy harvesting. Chemical Engineering Journal, 2018, 338, 1-7.             | 6.6                | 87                                 |
| 20 | Application of self-templated PHMA sub-microtubes in enhancing flame-retardance and anti-dripping of PET. Polymer Degradation and Stability, 2018, 154, 239-247. | 2.7                | 15                                 |
| 21 | The flame-retardancy and anti-dripping properties of novel poly(ethylene) Tj ETQq1 1 0.784314 rgBT /Overlock 10                                                  | ) Tf 50 667<br>2.7 | ' Td (terep <mark>h</mark> a<br>40 |