Zhiping

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9492146/publications.pdf

Version: 2024-02-01

713332 759055 21 473 12 21 citations h-index g-index papers 21 21 21 471 citing authors all docs docs citations times ranked

#	Article	IF	CITATIONS
1	Flexible cellulose-based thermoelectric sponge towards wearable pressure sensor and energy harvesting. Chemical Engineering Journal, 2018, 338, 1-7.	6.6	87
2	High-performance textile electrodes for wearable electronics obtained by an improved in situ polymerization method. Chemical Engineering Journal, 2019, 361, 897-907.	6.6	86
3	A shape-stable phase change composite prepared from cellulose nanofiber/polypyrrole/polyethylene glycol for electric-thermal energy conversion and storage. Chemical Engineering Journal, 2020, 400, 125950.	6.6	48
4	The flame-retardancy and anti-dripping properties of novel poly(ethylene) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 6 268-277.	527 Td (te 2.7	rephalate)/cyc 40
5	Conductive ionogel with underwater adhesion and stability as multimodal sensor for contactless signal propagation and wearable devices. Composites Part B: Engineering, 2022, 232, 109612.	5.9	28
6	Asymmetric composite wound dressing with hydrophobic flexible bandage and tissue-adhesive hydrogel for joints skin wound healing. Composites Part B: Engineering, 2022, 235, 109762.	5.9	26
7	Novel organic-inorganic hybrid polyphosphazene modified manganese hypophosphite shuttles towards the fire retardance and anti-dripping of PET. European Polymer Journal, 2019, 120, 109270.	2.6	24
8	Polyphosphazene microspheres modified with transition metal hydroxystannate for enhancing the flame retardancy of polyethylene terephthalate. Polymers for Advanced Technologies, 2020, 31, 1194-1207.	1.6	18
9	Highly Stable and Nonflammable Hydrated Salt-Paraffin Shape-Memory Gels for Sustainable Building Technology. ACS Sustainable Chemistry and Engineering, 2021, 9, 15442-15450.	3.2	16
10	Application of self-templated PHMA sub-microtubes in enhancing flame-retardance and anti-dripping of PET. Polymer Degradation and Stability, 2018, 154, 239-247.	2.7	15
11	Flameâ€retardant poly (ethylene terephthalate) enabled by a novel melamine polyphosphate nanowire. Polymers for Advanced Technologies, 2020, 31, 795-806.	1.6	13
12	Preparation and characterization of polyphosphazene-based flame retardants with different functional groups. Polymer Degradation and Stability, 2022, 196, 109815.	2.7	13
13	Screen-Printed Carbon Black/Recycled Sericin@Fabrics for Wearable Sensors to Monitor Sweat Loss. ACS Applied Materials & Diterfaces, 2022, 14, 11813-11819.	4.0	13
14	Lightweight, Environmentally Friendly, and Underwater Superelastic 3D-Architectured Aerogels for Efficient Protein Separation. ACS Sustainable Chemistry and Engineering, 2021, 9, 11738-11747.	3.2	9
15	Synthesis and application of poly (cyclotriphosphazeneâ€resveratrol) microspheres for enhancing flame retardancy of poly (ethylene terephthalate). Polymers for Advanced Technologies, 2022, 33, 658-671.	1.6	8
16	Effect of Sepiolite-Loaded Fe2O3 on Flame Retardancy of Waterborne Polyurethane. Advances in Polymer Technology, 2021, 2021, 1-10.	0.8	7
17	Real-time monitoring of multicomponent reactive dye adsorption on cotton fabrics by Raman spectroscopy. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2020, 230, 118051.	2.0	6
18	Effect of weak intermolecular interactions in micro/nanoscale polyphosphazenes and polyethylene terephthalate composites on flame retardancy. Polymers for Advanced Technologies, 2022, 33, 2231-2243.	1.6	5

ZHIPING

#	Article	IF	CITATIONS
19	Study on the effect of different dyeing systems on the interaction of multiâ€component reactive dyes by Raman spectroscopy. Coloration Technology, 2021, 137, 520-529.	0.7	4
20	Morphology-Controlled Synthesis of Polyphosphazene-Based Micro- and Nano-Materials and Their Application as Flame Retardants. Polymers, 2022, 14, 2072.	2.0	4
21	High strength and antiâ€freezing piezoresistive pressure sensor based on a composite gel. Polymers for Advanced Technologies, 2022, 33, 2448-2458.	1.6	3