Shannon L Ladeau

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9491572/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Using nearâ€ŧerm forecasts and uncertainty partitioning to inform prediction of oligotrophic lake cyanobacterial density. Ecological Applications, 2022, 32, e2590.	1.8	6
2	Changes in Container-Breeding Mosquito Diversity and Abundance Along an Urbanization Gradient are Associated With Dominance of Arboviral Vectors. Journal of Medical Entomology, 2022, 59, 843-854.	0.9	4
3	Higher West Nile Virus Infection in Aedes albopictus (Diptera: Culicidae) and Culex (Diptera: Culicidae) Mosquitoes From Lower Income Neighborhoods in Urban Baltimore, MD. Journal of Medical Entomology, 2021, 58, 1424-1428.	0.9	11
4	Rodents harbouring zoonotic pathogens take advantage of abandoned land in postâ€Katrina New Orleans. Molecular Ecology, 2021, 30, 1943-1945.	2.0	0
5	Knowledge, Attitude, and Practices Survey in Greece before the Implementation of Sterile Insect Technique against Aedes albopictus. Insects, 2021, 12, 212.	1.0	12
6	More than Green: tree structure and biodiversity patterns differ across canopy change regimes in Baltimore's urban forest. Urban Forestry and Urban Greening, 2021, 65, 127365.	2.3	3
7	Condition-Specific Competitive Effects of the Invasive Mosquito Aedes albopictus on the Resident Culex pipiens among Different Urban Container Habitats May Explain Their Coexistence in the Field. Insects, 2021, 12, 993.	1.0	5
8	Aedes albopictus Body Size Differs Across Neighborhoods With Varying Infrastructural Abandonment. Journal of Medical Entomology, 2020, 57, 615-619.	0.9	9
9	Parasite and pathogen effects on ecosystem processes: A quantitative review. Ecosphere, 2020, 11, e03057.	1.0	22
10	The Role of Vector Trait Variation in Vector-Borne Disease Dynamics. Frontiers in Ecology and Evolution, 2020, 8, .	1.1	57
11	Theoretical Perspectives of the Baltimore Ecosystem Study: Conceptual Evolution in a Social–Ecological Research Project. BioScience, 2020, 70, 297-314.	2.2	20
12	Infectious hematopoietic necrosis virus specialization in a multihost salmonid system. Evolutionary Applications, 2020, 13, 1841-1853.	1.5	5
13	Climate change, ecosystems and abrupt change: science priorities. Philosophical Transactions of the Royal Society B: Biological Sciences, 2020, 375, 20190105.	1.8	169
14	Using a birdfeeder network to explore the effects of suburban design on invasive and native birds. Avian Conservation and Ecology, 2019, 14, .	0.3	3
15	Knowing nature and community through mosquitoes: reframing pest management through lay vector ecologies. Local Environment, 2019, 24, 1119-1135.	1.1	5
16	Assessing Effectiveness of Recommended Residential Yard Management Measures Against Ticks. Journal of Medical Entomology, 2019, 56, 1420-1427.	0.9	14
17	Effects of Detritus on the Mosquito Culex pipiens: Phragmites and Schedonorus (Festuca) Invasion Affect Population Performance. International Journal of Environmental Research and Public Health, 2019, 16, 4118.	1.2	7
18	Relationships Among Immature-Stage Metrics and Adult Abundances of Mosquito Populations in Baltimore, MD. Journal of Medical Entomology, 2019, 56, 192-198.	0.9	7

SHANNON L LADEAU

#	Article	IF	CITATIONS
19	Citizen science and civic ecology: merging paths to stewardship. Journal of Environmental Studies and Sciences, 2019, 9, 133-143.	0.9	12
20	Reflecting on Efforts to Design an Inclusive Citizen Science Project in West Baltimore. Citizen Science: Theory and Practice, 2019, 4, .	0.6	13
21	An epidemiological model of virus transmission in salmonid fishes of the Columbia River Basin. Ecological Modelling, 2018, 377, 1-15.	1.2	5
22	Beyond "the Mosquito People― The Challenges of Engaging Community for Environmental Justice in Infested Urban Spaces. , 2018, , 295-318.		11
23	Reducing Aedes albopictus breeding sites through education: A study in urban area. PLoS ONE, 2018, 13, e0202451.	1.1	21
24	Primary blood-hosts of mosquitoes are influenced by social and ecological conditions in a complex urban landscape. Parasites and Vectors, 2018, 11, 218.	1.0	55
25	Dynamic heterogeneity: a framework to promote ecological integration and hypothesis generation in urban systems. Urban Ecosystems, 2017, 20, 1-14.	1.1	140
26	Infectious hematopoietic necrosis virus virological and genetic surveillance 2000–2012. Ecology, 2017, 98, 283-283.	1.5	11
27	The Next Decade of Big Data in Ecosystem Science. Ecosystems, 2017, 20, 274-283.	1.6	68
28	Citizen Science as a Tool for Mosquito Control. Journal of the American Mosquito Control Association, 2017, 33, 241-245.	0.2	40
29	Transmission routes maintaining a viral pathogen of steelhead trout within a complex multiâ€host assemblage. Ecology and Evolution, 2017, 7, 8187-8200.	0.8	10
30	Socio-Ecological Mechanisms Supporting High Densities of Aedes albopictus (Diptera: Culicidae) in Baltimore, MD. Journal of Medical Entomology, 2017, 54, 1183-1192.	0.9	60
31	Defining the Risk of Zika and Chikungunya Virus Transmission in Human Population Centers of the Eastern United States. PLoS Neglected Tropical Diseases, 2017, 11, e0005255.	1.3	54
32	Reframing communication about Zika and mosquitoes to increase disease prevention behavior. Cogent Environmental Science, 2017, 3, 1402498.	1.6	0
33	Effects of tire leachate on the invasive mosquito <i>Aedes albopictus</i> and the native congener <i>Aedes triseriatus</i> . PeerJ, 2017, 5, e3756.	0.9	22
34	The Emergence of Disease Ecology. Japanese Journal of Zoo and Wildlife Medicine, 2016, 21, 53-58.	0.2	0
35	Tickâ€; mosquitoâ€; and rodentâ€borne parasite sampling designs for the National Ecological Observatory Network. Ecosphere, 2016, 7, e01271.	1.0	31
36	Design for mosquito abundance, diversity, and phenology sampling within the National Ecological Observatory Network. Ecosphere, 2016, 7, e01320.	1.0	18

SHANNON L LADEAU

#	Article	IF	CITATIONS
37	Studying citizen science through adaptive management and learning feedbacks as mechanisms for improving conservation. Conservation Biology, 2016, 30, 487-495.	2.4	44
38	Effectiveness of Print Education at Reducing Urban Mosquito Infestation through Improved Resident-Based Management. PLoS ONE, 2016, 11, e0155011.	1.1	25
39	The ecological foundations of transmission potential and vectorâ€borne disease in urban landscapes. Functional Ecology, 2015, 29, 889-901.	1.7	144
40	Climate, environmental and socio-economic change: weighing up the balance in vector-borne disease transmission. Philosophical Transactions of the Royal Society B: Biological Sciences, 2015, 370, 20130551.	1.8	215
41	Spatial and Temporal Habitat Segregation of Mosquitoes in Urban Florida. PLoS ONE, 2014, 9, e91655.	1.1	66
42	A Tale of Two City Blocks: Differences in Immature and Adult Mosquito Abundances between Socioeconomically Different Urban Blocks in Baltimore (Maryland, USA). International Journal of Environmental Research and Public Health, 2014, 11, 3256-3270.	1.2	42
43	When is a parasite not a parasite? Effects of larval tick burdens on whiteâ€footed mouse survival. Ecology, 2014, 95, 1360-1369.	1.5	26
44	Linking Mosquito Infestation to Resident Socioeconomic Status, Knowledge, and Source Reduction Practices in Suburban Washington, DC. EcoHealth, 2013, 10, 36-47.	0.9	55
45	Climate change and species interactions: ways forward. Annals of the New York Academy of Sciences, 2013, 1297, 1-7.	1.8	44
46	Socioeconomic Status Affects Mosquito (Diptera: Culicidae) Larval Habitat Type Availability and Infestation Level. Journal of Medical Entomology, 2013, 50, 764-772.	0.9	57
47	Higher Mosquito Production in Low-Income Neighborhoods of Baltimore and Washington, DC: Understanding Ecological Drivers and Mosquito-Borne Disease Risk in Temperate Cities. International Journal of Environmental Research and Public Health, 2013, 10, 1505-1526.	1.2	108
48	Data–model fusion to better understand emerging pathogens and improve infectious disease forecasting. , 2011, 21, 1443-1460.		49
49	West Nile virus impacts in American crow populations are associated with human land use and climate. Ecological Research, 2011, 26, 909-916.	0.7	31
50	Range-wide effects of breeding- and nonbreeding-season climate on the abundance of a Neotropical migrant songbird. Ecology, 2011, 92, 1789-1798.	1.5	84
51	Ecological forecasting and data assimilation in a data-rich era. , 2011, 21, 1429-1442.		215
52	Advances in modeling highlight a tension between analytical accuracy and accessibility. Ecology, 2010, 91, 3488-3492.	1.5	13
53	Reâ€assessment of plant carbon dynamics at the Duke freeâ€air CO ₂ enrichment site: interactions of atmospheric [CO ₂] with nitrogen and water availability over stand development. New Phytologist, 2010, 185, 514-528.	3.5	242
54	Greater seed production in elevated CO ₂ is not accompanied by reduced seed quality in <i>Pinus taeda</i> L. Global Change Biology, 2010, 16, 1046-1056.	4.2	50

SHANNON L LADEAU

#	Article	IF	CITATIONS
55	Highâ€dimensional coexistence based on individual variation: a synthesis of evidence. Ecological Monographs, 2010, 80, 569-608.	2.4	141
56	Communicating with the public: opportunities and rewards for individual ecologists. Frontiers in Ecology and the Environment, 2010, 8, 292-298.	1.9	58
57	West Nile Virus Revisited: Consequences for North American Ecology. BioScience, 2008, 58, 937-946.	2.2	42
58	EXPLOITING TEMPORAL VARIABILITY TO UNDERSTAND TREE RECRUITMENT RESPONSE TO CLIMATE CHANGE. Ecological Monographs, 2007, 77, 163-177.	2.4	120
59	ECOLOGY OF WEST NILE VIRUS TRANSMISSION AND ITS IMPACT ON BIRDS IN THE WESTERN HEMISPHERE. Auk, 2007, 124, 1121.	0.7	135
60	TREE GROWTH INFERENCE AND PREDICTION FROM DIAMETER CENSUSES AND RING WIDTHS. Ecological Applications, 2007, 17, 1942-1953.	1.8	78
61	Ecology of West Nile Virus Transmission and its Impact on Birds in the Western Hemisphere. Auk, 2007, 124, 1121-1136.	0.7	164
62	West Nile virus emergence and large-scale declines of North American bird populations. Nature, 2007, 447, 710-713.	13.7	413
63	Resolving the biodiversity paradox. Ecology Letters, 2007, 10, 647-659.	3.0	185
64	Elevated CO2and tree fecundity: the role of tree size, interannual variability, and population heterogeneity. Global Change Biology, 2007, .	4.2	0
65	PREDICTING BIODIVERSITY CHANGE: OUTSIDE THE CLIMATE ENVELOPE, BEYOND THE SPECIES–AREA CURVE. Ecology, 2006, 87, 1896-1906.	1.5	160
66	Modeling Seed Dispersal Distances: Implications For Transgenic Pinus Taeda. , 2006, 16, 117-124.		44
67	Pollen production byPinus taedagrowing in elevated atmospheric CO2. Functional Ecology, 2006, 20, 541-547.	1.7	65
68	Elevated CO2 and tree fecundity: the role of tree size, interannual variability, and population heterogeneity. Global Change Biology, 2006, 12, 822-833.	4.2	51
69	FECUNDITY OF TREES AND THE COLONIZATION–COMPETITION HYPOTHESIS. Ecological Monographs, 2004, 74, 415-442.	2.4	152
70	Rising CO2 Levels and the Fecundity of Forest Trees. Science, 2001, 292, 95-98.	6.0	169