Philippe Dagaut

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/9491478/philippe-dagaut-publications-by-year.pdf

Version: 2024-04-09

286

ext. papers

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

271 11,508 61 papers citations h-inde

12,750

ext. citations

h-index g-index

4.6
avg, IF

L-index

#	Paper	IF	Citations
271	A comprehensive experimental and modeling study of n-propylcyclohexane oxidation. <i>Combustion and Flame</i> , 2022 , 238, 111944	5.3	1
270	Gasoline Surrogate Oxidation in a Motored Engine, a JSR, and an RCM: Characterization of Cool-Flame Products by High-Resolution Mass Spectrometry. <i>Energy & Energy &</i>	4.1	1
269	Revisiting low temperature oxidation chemistry of n-heptane. <i>Combustion and Flame</i> , 2022 , 242, 11217	7 _{5.3}	1
268	Experimental Characterization of Tetrahydrofuran Low-Temperature Oxidation Products Including Ketohydroperoxides and Highly Oxygenated Molecules. <i>Energy & Energy & </i>	4.1	6
267	On the similarities and differences between the products of oxidation of hydrocarbons under simulated atmospheric conditions and cool flames. <i>Atmospheric Chemistry and Physics</i> , 2021 , 21, 7845-7	862 862	4
266	Polar Aromatic Compounds in Soot from Premixed Flames of Kerosene, Synthetic Paraffinic Kerosene, and KeroseneBynthetic Biofuels. <i>Energy & Damp; Fuels</i> , 2021 , 35, 11427-11444	4.1	1
265	Oxidation of C5 esters: Influence of the position of the ester function. <i>International Journal of Chemical Kinetics</i> , 2021 , 53, 1124-1132	1.4	1
264	Exploring pyrolysis and oxidation chemistry of o-xylene at various pressures with special concerns on PAH formation. <i>Combustion and Flame</i> , 2021 , 228, 351-363	5.3	O
263	Low-temperature oxidation of a gasoline surrogate: Experimental investigation in JSR and RCM using high-resolution mass spectrometry. <i>Combustion and Flame</i> , 2021 , 228, 128-141	5.3	5
262	Oxidation of diethyl ether: Extensive characterization of products formed at low temperature using high resolution mass spectrometry. <i>Combustion and Flame</i> , 2021 , 228, 340-350	5.3	5
261	A pyrolysis study on C4[18 symmetric ethers. <i>Proceedings of the Combustion Institute</i> , 2021 , 38, 329-336	5.9	3
260	Oxidation of di-n-propyl ether: Characterization of low-temperature products. <i>Proceedings of the Combustion Institute</i> , 2021 , 38, 337-344	5.9	13
259	Oxidation of pentan-2-ol [part II: Experimental and modeling study. <i>Proceedings of the Combustion Institute</i> , 2021 , 38, 833-841	5.9	2
258	On the implications of nitromethane INO chemistry interactions for combustion processes. <i>Fuel</i> , 2021 , 289, 119861	7.1	4
257	Oxidation of pentan-2-ol IPart I: Theoretical investigation on the decomposition and isomerization reactions of pentan-2-ol radicals. <i>Proceedings of the Combustion Institute</i> , 2021 , 38, 823-832	5.9	2
256	Experimental and numerical studies of the diluent influence (N2, Ar, He, Xe) on stable premixed methane flames in micro-combustion. <i>Proceedings of the Combustion Institute</i> , 2021 , 38, 6753-6761	5.9	2
255	Experimental characterization of n-heptane low-temperature oxidation products including keto-hydroperoxides and highly oxygenated organic molecules (HOMs). <i>Combustion and Flame</i> , 2021 , 224, 83-93	5.3	11

254	An experimental and kinetic modeling study on the oxidation of 1,3-dioxolane. <i>Proceedings of the Combustion Institute</i> , 2021 , 38, 543-553	5.9	9	
253	Experimental and kinetic modeling study of n-pentane oxidation at 10 atm, Detection of complex low-temperature products by Q-Exactive Orbitrap. <i>Combustion and Flame</i> , 2021 , 235, 111723	5.3	1	
252	Experimental and kinetic modeling study of n-hexane oxidation. Detection of complex low-temperature products using high-resolution mass spectrometry. <i>Combustion and Flame</i> , 2021 , 233, 111581	5.3	4	
251	A high pressure oxidation study of di-n-propyl ether. <i>Fuel</i> , 2020 , 263, 116554	7.1	9	
250	Cool flame chemistry of diesel surrogate compounds: n-Decane, 2-methylnonane, 2,7-dimethyloctane, and n-butylcyclohexane. <i>Combustion and Flame</i> , 2020 , 219, 384-392	5.3	5	
249	Oxidation of di-n-butyl ether: Experimental characterization of low-temperature products in JSR and RCM. <i>Combustion and Flame</i> , 2020 , 222, 133-144	5.3	17	
248	Experimental and kinetic modeling study of the oxidation of cyclopentane and methylcyclopentane at atmospheric pressure. <i>International Journal of Chemical Kinetics</i> , 2020 , 52, 943-956	1.4	1	
247	Methyl-3-hexenoate combustion chemistry: Experimental study and numerical kinetic simulation. <i>Combustion and Flame</i> , 2020 , 222, 170-180	5.3	7	
246	Experiments for kinetic mechanism assessment. Computer Aided Chemical Engineering, 2019, 45, 445-47	71 5.6	3	
245	Ozone-assisted combustion of hydrogen: Altomparison with isooctane. <i>International Journal of Hydrogen Energy</i> , 2019 , 44, 13953-13963	6.7	7	
244	Low-temperature chemistry triggered by probe cooling in a low-pressure premixed flame. <i>Combustion and Flame</i> , 2019 , 204, 260-267	5.3	14	
243	Kinetics of propyl acetate oxidation: Experiments in a jet-stirred reactor, ab initio calculations, and rate constant determination. <i>Proceedings of the Combustion Institute</i> , 2019 , 37, 429-436	5.9	10	
242	An experimental and modeling study of the oxidation of 3-pentanol at high pressure. <i>Proceedings of the Combustion Institute</i> , 2019 , 37, 477-484	5.9	7	
241	New insights into propanal oxidation at low temperatures: An experimental and kinetic modeling study. <i>Proceedings of the Combustion Institute</i> , 2019 , 37, 565-573	5.9	10	
240	Insights into the oxidation kinetics of a cetane improver [1],2-dimethoxyethane (1,2-DME) with experimental and modeling methods. <i>Proceedings of the Combustion Institute</i> , 2019 , 37, 555-564	5.9	6	
239	Kinetics of oxidation of levulinic biofuels in a jet-stirred reactor: Methyl levulinate. <i>Proceedings of the Combustion Institute</i> , 2019 , 37, 381-388	5.9	4	
238	The atmospheric impact of the reaction of N2O with NO3: A theoretical study. <i>Chemical Physics Letters</i> , 2019 , 731, 136605	2.5	3	
237	On the Oxidation of Ammonia and Mutual Sensitization of the Oxidation of No and Ammonia: Experimental and Kinetic Modeling. <i>Combustion Science and Technology</i> , 2019 , 1-13	1.5	7	

236	Emission of Carbonyl and Polyaromatic Hydrocarbon Pollutants From the Combustion of Liquid Fuels: Impact of Biofuel Blending. <i>Journal of Engineering for Gas Turbines and Power</i> , 2019 , 141,	1.7	3
235	Pyrolysis of butane-2,3-dione from low to high pressures: Implications for methyl-related growth chemistry. <i>Combustion and Flame</i> , 2019 , 200, 69-81	5.3	11
234	Exploring gasoline oxidation chemistry in jet stirred reactors. <i>Fuel</i> , 2019 , 236, 1282-1292	7.1	29
233	More insight into cyclohexanone oxidation: Jet-stirred reactor experiments and kinetic modeling. <i>Fuel</i> , 2018 , 220, 908-915	7.1	3
232	An experimental chemical kinetic study of the oxidation of diethyl ether in a jet-stirred reactor and comprehensive modeling. <i>Combustion and Flame</i> , 2018 , 193, 453-462	5.3	28
231	Exploring the negative temperature coefficient behavior of acetaldehyde based on detailed intermediate measurements in a jet-stirred reactor. <i>Combustion and Flame</i> , 2018 , 192, 120-129	5.3	23
230	Pulsating combustion of ethylene in micro-channels with controlled temperature gradient. <i>Combustion Science and Technology</i> , 2018 , 1-11	1.5	2
229	n-Heptane cool flame chemistry: Unraveling intermediate species measured in a stirred reactor and motored engine. <i>Combustion and Flame</i> , 2018 , 187, 199-216	5.3	47
228	Experimental and modeling studies of a biofuel surrogate compound: laminar burning velocities and jet-stirred reactor measurements of anisole. <i>Combustion and Flame</i> , 2018 , 189, 325-336	5.3	32
227	Exploration of the oxidation chemistry of dimethoxymethane: Jet-stirred reactor experiments and kinetic modeling. <i>Combustion and Flame</i> , 2018 , 193, 491-501	5.3	36
226	Combustion of synthetic jet fuels: Naphthenic cut and blend with a gas-to-liquid (GtL) jet fuel. <i>Proceedings of the Combustion Institute</i> , 2017 , 36, 433-440	5.9	9
225	An experimental and modelling study of n-pentane oxidation in two jet-stirred reactors: The importance of pressure-dependent kinetics and new reaction pathways. <i>Proceedings of the Combustion Institute</i> , 2017 , 36, 441-448	5.9	66
224	Experimental and Modeling Study of the Oxidation of Two Branched Aldehydes in a Jet-Stirred Reactor: 2-Methylbutanal and 3-Methylbutanal. <i>Energy & Energy &</i>	4.1	4
223	A Chemical Kinetic Investigation on Butyl Formate Oxidation: Ab Initio Calculations and Experiments in a Jet-Stirred Reactor. <i>Energy & Experiments in a Jet-Stirred Reactor</i> .	4.1	4
222	Screening Method for Fuels in Homogeneous Charge Compression Ignition Engines: Application to Valeric Biofuels. <i>Energy & Documents</i> 2017, 31, 607-614	4.1	17
221	Quantities of Interest in Jet Stirred Reactor Oxidation of a High-Octane Gasoline. <i>Energy & amp; Fuels</i> , 2017 , 31, 5543-5553	4.1	16
220	A comprehensive experimental and kinetic modeling study of n-propylbenzene combustion. <i>Combustion and Flame</i> , 2017 , 186, 178-192	5.3	25
219	A chemical kinetic study of the oxidation of dibutyl-ether in a jet-stirred reactor. <i>Combustion and Flame</i> , 2017 , 185, 4-15	5.3	45

(2015-2017)

218	of organic compounds. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2017 , 114, 13102-13107	11.5	80
217	Burning velocities and jet-stirred reactor oxidation of diethyl carbonate. <i>Proceedings of the Combustion Institute</i> , 2017 , 36, 553-560	5.9	7
216	Experimental and Detailed Kinetic Modeling Study of Cyclopentanone Oxidation in a Jet-Stirred Reactor at 1 and 10 atm. <i>Energy & Description</i> 2017, 31, 2144-2155	4.1	18
215	New insights into the low-temperature oxidation of 2-methylhexane. <i>Proceedings of the Combustion Institute</i> , 2017 , 36, 373-382	5.9	30
214	An experimental study in a jet-stirred reactor and a comprehensive kinetic mechanism for the oxidation of methyl ethyl ketone. <i>Proceedings of the Combustion Institute</i> , 2017 , 36, 459-467	5.9	26
213	Jet-stirred reactor oxidation of alkane-rich FACE gasoline fuels. <i>Proceedings of the Combustion Institute</i> , 2017 , 36, 517-524	5.9	23
212	Elucidating reactivity regimes in cyclopentane oxidation: Jet stirred reactor experiments, computational chemistry, and kinetic modeling. <i>Proceedings of the Combustion Institute</i> , 2017 , 36, 469-4	1 <i>7</i> 79	27
211	Quantification of the Keto-Hydroperoxide (HOOCHOCHO) and Other Elusive Intermediates during Low-Temperature Oxidation of Dimethyl Ether. <i>Journal of Physical Chemistry A</i> , 2016 , 120, 7890-7901	2.8	72
210	Fuel Class Valerates 2016 , 59-85		1
209	Combustion in micro-channels with a controlled temperature gradient. <i>Experimental Thermal and Fluid Science</i> , 2016 , 73, 79-86	3	48
208	A comprehensive experimental and kinetic modeling study of ethylbenzene combustion. <i>Combustion and Flame</i> , 2016 , 166, 255-265	5.3	48
207	A detailed chemical kinetic modeling, ignition delay time and jet-stirred reactor study of methanol oxidation. <i>Combustion and Flame</i> , 2016 , 165, 125-136	5.3	162
206	Additional chain-branching pathways in the low-temperature oxidation of branched alkanes. <i>Combustion and Flame</i> , 2016 , 164, 386-396	5.3	72
205	Oscillating flames in micro-combustion. <i>Combustion and Flame</i> , 2016 , 167, 392-394	5.3	34
204	Experimental and Kinetic Modeling of the Oxidation of Synthetic Jet Fuels and Surrogates. <i>Combustion Science and Technology</i> , 2016 , 188, 1705-1718	1.5	7
203	Kinetics of Oxidation of a 100% Gas-to-Liquid Synthetic Jet Fuel and a Mixture GtL/1-Hexanol in a Jet-Stirred Reactor: Experimental and Modeling Study. <i>Journal of Engineering for Gas Turbines and Power</i> , 2015 , 137,	1.7	6
202	Quantification of HO2 and other products of dimethyl ether oxidation (H2O2, H2O, and CH2O) in a jet-stirred reactor at elevated temperatures by low-pressure sampling and continuous-wave cavity ring-down spectroscopy. <i>Fuel</i> , 2015 , 158, 248-252	7.1	17
201	Computational Kinetic Study for the Unimolecular Decomposition of Cyclopentanone. <i>International Journal of Chemical Kinetics</i> , 2015 , 47, 439-446	1.4	14

200	An experimental and modeling study of diethyl carbonate oxidation. <i>Combustion and Flame</i> , 2015 , 162, 1395-1405	5.3	20
199	Experimental and kinetic modeling study of styrene combustion. <i>Combustion and Flame</i> , 2015 , 162, 186	18 <u>5</u> .1388∶	3 40
198	Ozone applied to the homogeneous charge compression ignition engine to control alcohol fuels combustion. <i>Applied Energy</i> , 2015 , 160, 566-580	10.7	47
197	Theoretical kinetic study for methyl levulinate: oxidation by OH and CH3 radicals and further unimolecular decomposition pathways. <i>Physical Chemistry Chemical Physics</i> , 2015 , 17, 23384-91	3.6	18
196	An experimental and kinetic modeling study of n -hexane oxidation. <i>Combustion and Flame</i> , 2015 , 162, 4194-4207	5.3	98
195	Investigation on the pyrolysis and oxidation of toluene over a wide range conditions. I. Flow reactor pyrolysis and jet stirred reactor oxidation. <i>Combustion and Flame</i> , 2015 , 162, 3-21	5.3	126
194	Investigation on the pyrolysis and oxidation of toluene over a wide range conditions. II. A comprehensive kinetic modeling study. <i>Combustion and Flame</i> , 2015 , 162, 22-40	5.3	86
193	Computational Kinetic Study for the Unimolecular Decomposition Pathways of Cyclohexanone. Journal of Physical Chemistry A, 2015 , 119, 7138-44	2.8	15
192	Experimental and kinetic modeling study of trans-2-butene oxidation in a jet-stirred reactor and a combustion bomb. <i>Proceedings of the Combustion Institute</i> , 2015 , 35, 317-324	5.9	25
191	An experimental and modeling study of n-octanol combustion. <i>Proceedings of the Combustion Institute</i> , 2015 , 35, 419-427	5.9	72
190	Application of an Ozone Generator to Control the Homogeneous Charge Compression Ignition Combustion Process 2015 ,		4
189	Towards Stoichiometric Combustion in HCCI Engines: Effect of Ozone Seeding and Dilution 2015 ,		5
188	Identification and Quantification of Aromatic Hydrocarbons Adsorbed on Soot from Premixed Flames of Kerosene, Synthetic Kerosene, and KeroseneBynthetic Biofuels. <i>Energy & amp; Fuels</i> , 2015 , 29, 6556-6564	4.1	7
187	The Combustion of Synthetic Jet Fuels (Gas to Liquid and Coal to Liquid) and Multi-Component Surrogates: Experimental and Modeling Study 2015 ,		3
186	Laminar burning velocities of premixed nitromethane/air flames: An experimental and kinetic modeling study. <i>Proceedings of the Combustion Institute</i> , 2015 , 35, 703-710	5.9	33
185	Investigation of iso-octane combustion in a homogeneous charge compression ignition engine seeded by ozone, nitric oxide and nitrogen dioxide. <i>Proceedings of the Combustion Institute</i> , 2015 , 35, 3125-3132	5.9	56
184	Kinetics of oxidation of cyclohexanone in a jet-stirred reactor: Experimental and modeling. <i>Proceedings of the Combustion Institute</i> , 2015 , 35, 507-514	5.9	23
183	Detection and Identification of the Keto-Hydroperoxide (HOOCH2OCHO) and Other Intermediates during Low-Temperature Oxidation of Dimethyl Ether. <i>Journal of Physical Chemistry A</i> , 2015 , 119, 7361-	·74 ⁸	111

(2013-2015)

182	Investigation of the photochemical reactivity of soot particles derived from biofuels toward NO2. A kinetic and product study. <i>Journal of Physical Chemistry A</i> , 2015 , 119, 2006-15	2.8	5
181	Experimental and Modeling Study of the Oxidation of 1-Butene and cis-2-Butene in a Jet-Stirred Reactor and a Combustion Vessel. <i>Energy & Damp; Fuels</i> , 2015 , 29, 1107-1118	4.1	29
180	Chemical kinetics modeling of n-nonane oxidation in oxygen/argon using excited-state species time histories. <i>Combustion and Flame</i> , 2014 , 161, 1146-1163	5.3	5
179	Experimental and detailed kinetic model for the oxidation of a Gas to Liquid (GtL) jet fuel. <i>Combustion and Flame</i> , 2014 , 161, 835-847	5.3	92
178	An experimental and modeling study of 2-methyl-1-butanol oxidation in a jet-stirred reactor. <i>Combustion and Flame</i> , 2014 , 161, 3003-3013	5.3	26
177	Experimental Study of the Oxidation of N-Tetradecane in a Jet-Stirred Reactor (JSR) and Detailed Chemical Kinetic Modeling. <i>Combustion Science and Technology</i> , 2014 , 186, 594-606	1.5	6
176	An alternative to trial and error methodology in solid phase extraction: an original automated solid phase extraction procedure for analysing PAHs and PAH-derivatives in soot. <i>RSC Advances</i> , 2014 , 4, 336	53 6 7336	54 ¹²
175	Photodegradation of pyrene on Al2O3 surfaces: a detailed kinetic and product study. <i>Journal of Physical Chemistry A</i> , 2014 , 118, 7007-16	2.8	12
174	CFD simulations using the TDAC method to model iso-octane combustion for a large range of ozone seeding and temperature conditions in a single cylinder HCCI engine. <i>Fuel</i> , 2014 , 137, 179-184	7.1	39
173	A comprehensive combustion chemistry study of 2,5-dimethylhexane. <i>Combustion and Flame</i> , 2014 , 161, 1444-1459	5.3	71
172	Experimental and kinetic modeling study of trans-methyl-3-hexenoate oxidation in JSR and the role of CC double bond. <i>Combustion and Flame</i> , 2014 , 161, 818-825	5.3	35
171	Effect of Additives on Combustion Characteristics of a Natural Gas Fueled HCCI Engine 2014 ,		11
170	Combustion and Emissions Characteristics of Valeric Biofuels in a Compression Ignition Engine. Journal of Energy Engineering - ASCE, 2014 , 140,	1.7	24
169	Combustion of a Gas-to-LiquidBased Alternative Jet Fuel: Experimental and Detailed Kinetic Modeling. <i>Combustion Science and Technology</i> , 2014 , 186, 1275-1283	1.5	7
168	Quantitative Measurements of HO2 and other products of n-butane oxidation (H2O2, H2O, CH2O, and C2H4) at elevated temperatures by direct coupling of a jet-stirred reactor with sampling nozzle and cavity ring-down spectroscopy (cw-CRDS). <i>Journal of the American Chemical Society</i> , 2014 , 136, 166	16.4 8 9-94	20
167	New insights into the peculiar behavior of laminar burning velocities of hydrogenllir flames according to pressure and equivalence ratio. <i>Combustion and Flame</i> , 2014 , 161, 2235-2241	5.3	33
166	Homogeneous Charge Compression Ignition Combustion of Primary Reference Fuels Influenced by Ozone Addition. <i>Energy & Dos Samp; Fuels</i> , 2013 , 27, 5495-5505	4.1	46
165	Mineral oxides change the atmospheric reactivity of soot: NO2 uptake under dark and UV irradiation conditions. <i>Journal of Physical Chemistry A</i> , 2013 , 117, 12897-911	2.8	12

164	Experimental Study of Tetralin Oxidation and Kinetic Modeling of Its Pyrolysis and Oxidation. <i>Energy & Dispersion of Tetralin Oxidation and Kinetic Modeling of Its Pyrolysis and Oxidation.</i>	4.1	21
163	A comprehensive experimental and modeling study of iso-pentanol combustion. <i>Combustion and Flame</i> , 2013 , 160, 2712-2728	5.3	77
162	Influence of ozone on the combustion of n-heptane in a HCCI engine. <i>Proceedings of the Combustion Institute</i> , 2013 , 34, 3005-3012	5.9	74
161	Jet-stirred reactor and flame studies of propanal oxidation. <i>Proceedings of the Combustion Institute</i> , 2013 , 34, 599-606	5.9	33
160	Experimental and modeling study of the oxidation of n- and iso-butanal. <i>Combustion and Flame</i> , 2013 , 160, 1609-1626	5.3	33
159	A comprehensive experimental and detailed chemical kinetic modelling study of 2,5-dimethylfuran pyrolysis and oxidation. <i>Combustion and Flame</i> , 2013 , 160, 2291-2291	5.3	118
158	Experimental and semi-detailed kinetic modeling study of decalin oxidation and pyrolysis over a wide range of conditions. <i>Proceedings of the Combustion Institute</i> , 2013 , 34, 289-296	5.9	44
157	Experimental and numerical analysis of nitric oxide effect on the ignition of iso-octane in a single cylinder HCCI engine. <i>Combustion and Flame</i> , 2013 , 160, 1476-1483	5.3	72
156	Engine Performances and Emissions of Second-Generation Biofuels in Spark Ignition Engines: The Case of Methyl and Ethyl Valerates 2013 ,		10
155	Oxidation Kinetics of Mixtures of Iso-Octane with Ethanol or Butanol in a Jet-Stirred Reactor: Experimental and Modeling Study. <i>Combustion Science and Technology</i> , 2012 , 184, 1025-1038	1.5	16
154	Experimental and Kinetic Modeling Study of 3-Methylheptane in a Jet-Stirred Reactor. <i>Energy & Energy Energy Fuels</i> , 2012 , 26, 4680-4689	4.1	24
153	Experimental and Modeling Study of the Oxidation Kinetics of n-Undecane and n-Dodecane in a Jet-Stirred Reactor. <i>Energy & Dodecane</i> in 2 Jet-Stirred Reactor.	4.1	57
152	Experimental and Detailed Kinetic Modeling Study of Ethyl Pentanoate (Ethyl Valerate) Oxidation in a Jet Stirred Reactor and Laminar Burning Velocities in a Spherical Combustion Chamber. <i>Energy & Energy</i> 8, 2012, 26, 4735-4748	4.1	51
151	Laminar Burning Velocities of C4tt7 Ethyl Esters in a Spherical Combustion Chamber: Experimental and Detailed Kinetic Modeling. <i>Energy & Description</i> 2012, 26, 6669-6677	4.1	37
150	Oxidation of a Coal-to-Liquid Synthetic Jet Fuel: Experimental and Chemical Kinetic Modeling Study. <i>Energy & Energy & E</i>	4.1	41
149	Autoignition of surrogate biodiesel fuel (B30) at high pressures: Experimental and modeling kinetic study. <i>Combustion and Flame</i> , 2012 , 159, 996-1008	5.3	24
148	Kinetics of Oxidation of a Reformulated Jet Fuel (1-Hexanol/Jet A-1) in a Jet-Stirred Reactor: Experimental and Modeling Study. <i>Combustion Science and Technology</i> , 2012 , 184, 1039-1050	1.5	8
147	Experimental and Detailed Kinetic Modeling Study of the Effect of Ozone on the Combustion of Methane. <i>Energy & Documents</i> , 2011, 25, 2909-2916	4.1	68

(2010-2011)

146	Experimental and detailed kinetic modeling study of 1-pentanol oxidation in a JSR and combustion in a bomb. <i>Proceedings of the Combustion Institute</i> , 2011 , 33, 367-374	5.9	92	
145	Experimental and kinetic modeling of methyl octanoate oxidation in an opposed-flow diffusion flame and a jet-stirred reactor. <i>Proceedings of the Combustion Institute</i> , 2011 , 33, 1037-1043	5.9	45	
144	Oxidation of commercial and surrogate bio-Diesel fuels (B30) in a jet-stirred reactor at elevated pressure: Experimental and modeling kinetic study. <i>Proceedings of the Combustion Institute</i> , 2011 , 33, 375-382	5.9	41	
143	Auto-ignition and combustion characteristics in HCCI and JSR using 1-butanol/n-heptane and ethanol/n-heptane blends. <i>Proceedings of the Combustion Institute</i> , 2011 , 33, 3007-3014	5.9	98	
142	Experimental and Detailed Kinetic Modeling Study of Isoamyl Alcohol (Isopentanol) Oxidation in a Jet-Stirred Reactor at Elevated Pressure. <i>Energy & Energy </i>	4.1	64	
141	2-Propanol Oxidation in a Pressurized Jet-Stirred Reactor (JSR) and Combustion Bomb: Experimental and Detailed Kinetic Modeling Study. <i>Energy & Energy & En</i>	4.1	29	
140	Experimental and Detailed Kinetic Modeling Study of the Oxidation of 1-Propanol in a Pressurized Jet-Stirred Reactor (JSR) and a Combustion Bomb. <i>Energy & Energy & </i>	4.1	30	
139	Effects of Dilution on Laminar Burning Velocity of Premixed Methane/Air Flames. <i>Energy & Energy & Ene</i>	4.1	116	
138	Numerical and experimental study of ethanol combustion and oxidation in laminar premixed flames and in jet-stirred reactor. <i>Combustion and Flame</i> , 2011 , 158, 705-725	5.3	133	
137	The oxidation of n-butylbenzene: Experimental study in a JSR at 10atm and detailed chemical kinetic modeling. <i>Proceedings of the Combustion Institute</i> , 2011 , 33, 209-216	5.9	34	
136	Oxidation kinetics of n-nonane: Measurements and modeling of ignition delay times and product concentrations. <i>Proceedings of the Combustion Institute</i> , 2011 , 33, 175-183	5.9	20	
135	Oxidation of Ethylene and Propene in the Presence of CO2 and H2O: Experimental and Detailed Kinetic Modeling Study. <i>Combustion Science and Technology</i> , 2010 , 182, 333-349	1.5	31	
134	Kinetics of Oxidation of a Synthetic Jet Fuel in a Jet-Stirred Reactor: Experimental and Modeling Study. <i>Energy & Energy & Energ</i>	4.1	34	
133	Kinetics of Oxidation of Commercial and Surrogate Diesel Fuels in a Jet-Stirred Reactor: Experimental and Modeling Studies. <i>Energy & Experimental and Modeling Studies</i> . <i>Energy & Experimental and Modeling Studies</i> . <i>Energy & Experimental and Modeling Studies</i> .	4.1	45	
132	Experimental and Detailed Kinetic Modeling Study of 1-Hexanol Oxidation in a Pressurized Jet-Stirred Reactor and a Combustion Bomb. <i>Energy & Energy & Energ</i>	4.1	48	
131	Thermodynamic data for the modeling of the thermal decomposition of biodiesel. 1. Saturated and monounsaturated FAMEs. <i>Journal of Physical Chemistry A</i> , 2010 , 114, 3788-95	2.8	19	
130	Kinetics of Oxidation of 2-Butanol and Isobutanol in a Jet-Stirred Reactor: Experimental Study and Modeling Investigation. <i>Energy & Documents</i> 2010, 24, 5244-5256	4.1	50	
129	Determination of polycyclic aromatic hydrocarbons in kerosene and bio-kerosene soot. Chemosphere, 2010, 78, 1342-9	8.4	15	

128	Improved optimization of polycyclic aromatic hydrocarbons (PAHs) mixtures resolution in reversed-phase high-performance liquid chromatography by using factorial design and response surface methodology. <i>Talanta</i> , 2010 , 81, 265-74	6.2	17
127	Experimental and Modeling Study of the Kinetics of Oxidation of Simple Biodiesel B iobutanol Surrogates: Methyl Octanoate B utanol Mixtures. <i>Energy & Energy & Energ</i>	4.1	36
126	Chemical kinetic study of the oxidation of a biodiesel-bioethanol surrogate fuel: methyl octanoate-ethanol mixtures. <i>Journal of Physical Chemistry A</i> , 2010 , 114, 3896-908	2.8	23
125	Advances in PAHs/nitro-PAHs fractioning. <i>Analytical Methods</i> , 2010 , 2, 2017	3.2	7
124	Impact of Ethylene and NO Addition on Fuel Oxidation Under Simulated HCCI Conditions. <i>Combustion Science and Technology</i> , 2010 , 182, 422-435	1.5	
123	Experimental and modeling study of the kinetics of oxidation of ethanol-n-heptane mixtures in a jet-stirred reactor. <i>Fuel</i> , 2010 , 89, 280-286	7.1	65
122	Oxidation of H2/CO2 mixtures and effect of hydrogen initial concentration on the combustion of CH4 and CH4/CO2 mixtures: Experiments and modeling. <i>Proceedings of the Combustion Institute</i> , 2009 , 32, 427-435	5.9	51
121	Influence of EGR compounds on the oxidation of an HCCI-diesel surrogate. <i>Proceedings of the Combustion Institute</i> , 2009 , 32, 2851-2859	5.9	29
120	Impact of acetaldehyde and NO addition on the 1-octene oxidation under simulated HCCI conditions. <i>Proceedings of the Combustion Institute</i> , 2009 , 32, 2861-2868	5.9	13
119	An experimental and kinetic modeling study of n-butanol combustion. <i>Combustion and Flame</i> , 2009 , 156, 852-864	5.3	253
118	A chemical kinetic study of n-butanol oxidation at elevated pressure in a jet stirred reactor. <i>Proceedings of the Combustion Institute</i> , 2009 , 32, 229-237	5.9	189
117	A jet-stirred reactor and kinetic modeling study of ethyl propanoate oxidation. <i>Combustion and Flame</i> , 2009 , 156, 250-260	5.3	58
116	Experimental and Modeling Study of the Kinetics of Oxidation of Methanol Lasoline Surrogate Mixtures (M85 Surrogate) in a Jet-Stirred Reactor. <i>Energy & Energy & Ene</i>	4.1	13
115	Chemical Kinetic Study of the Oxidation of Isocetane (2,2,4,4,6,8,8-Heptamethylnonane) in a Jet-stirred Reactor: Experimental and Modeling. <i>Energy & Energy & Energy</i>	4.1	31
114	Experimental and Detailed Modeling Study of the Effect of Water Vapor on the Kinetics of Combustion of Hydrogen and Natural Gas, Impact on NOx. <i>Energy & Documents</i> , 2009, 23, 725-734	4.1	84
113	Experimental and Modeling Study of the Kinetics of Oxidation of Butanoll-Heptane Mixtures in a Jet-stirred Reactor. <i>Energy & Fuels</i> , 2009 , 23, 3527-3535	4.1	83
112	Detailed Kinetic Mechanism for the Oxidation of Vegetable Oil Methyl Esters: New Evidence from Methyl Heptanoate. <i>Energy & Domain Science (Methyl Heptanoate)</i> 23, 4254-4268	4.1	56
111	Experimental and Modeling Study of the Kinetics of Oxidation of Ethanol@asoline Surrogate Mixtures (E85 Surrogate) in a Jet-Stirred Reactor. <i>Energy & Documents</i> 2008, 22, 3499-3505	4.1	83

110	Experimental and Kinetic Modeling Study of the Oxidation of Methyl Hexanoate. <i>Energy & Energy & Energ</i>	4.1	84
109	The trapping system for the recirculated gases at different locations of the exhaust gas recirculation (EGR) pipe of a homogeneous charge compression ignition (HCCI) engine. Measurement Science and Technology, 2008, 19, 105104	2	2
108	Ethyl Tertiary Butyl Ether Ignition and Combustion Using a Shock Tube and Spherical Bomb. <i>Energy & Emp; Fuels</i> , 2008 , 22, 3701-3708	4.1	18
107	Effect of Water Vapor on the Kinetics of Combustion of Hydrogen and Natural Gas: Experimental and Detailed Modeling Study 2008 ,		11
106	Oxidation of Natural Gas, Natural Gas/Syngas Mixtures, and Effect of Burnt Gas Recirculation: Experimental and Detailed Kinetic Modeling. <i>Journal of Engineering for Gas Turbines and Power</i> , 2008 , 130,	1.7	44
105	Experimental and Detailed Kinetic Modeling of the Oxidation of Methane and Methane/Syngas Mixtures and Effect of Carbon Dioxide Addition. <i>Combustion Science and Technology</i> , 2008 , 180, 2046-20	ე∳∳	49
104	Kinetics of 1,2-Dimethylbenzene Oxidation and Ignition: Experimental and Detailed Chemical Kinetic Modeling. <i>Combustion Science and Technology</i> , 2008 , 180, 1748-1771	1.5	25
103	Homogeneous Charge Compression Ignition: Formulation Effect of a Diesel Fuel on the Initiation and the Combustion - Potential of Olefin Impact in a Diesel Base Fuel. <i>Oil and Gas Science and Technology</i> , 2008 , 63, 419-432	1.9	2
102	Experimental and chemical kinetic modeling study of small methyl esters oxidation: Methyl (E)-2-butenoate and methyl butanoate. <i>Combustion and Flame</i> , 2008 , 155, 635-650	5.3	129
101	The oxidation of hydrogen cyanide and related chemistry. <i>Progress in Energy and Combustion Science</i> , 2008 , 34, 1-46	33.6	223
100	NO reduction capacity of four major solid fuels in reburning conditions Experiments and modeling. <i>Fuel</i> , 2008 , 87, 274-289	7.1	33
99	Oxidation kinetics of butanolgasoline surrogate mixtures in a jet-stirred reactor: Experimental and modeling study. <i>Fuel</i> , 2008 , 87, 3313-3321	7.1	100
98	High pressure effects on the mutual sensitization of the oxidation of NO and CH4-C2H6 blends. <i>Physical Chemistry Chemical Physics</i> , 2007 , 9, 4230-44	3.6	63
97	Modeling of the Oxidation of Primary Reference Fuel in the Presence of Oxygenated Octane Improvers: Ethyl Tert-Butyl Ether and Ethanol. <i>Energy & Energy & E</i>	4.1	28
96	OXIDATION OF 1-METHYLNAPHTHALENE AT 11/13 ATM: EXPERIMENTAL STUDY IN A JSR AND DETAILED CHEMICAL KINETIC MODELING. <i>Combustion Science and Technology</i> , 2007 , 179, 1261-1285	1.5	30
95	Kinetics of Jet Fuel Combustion Over Extended Conditions: Experimental and Modeling. <i>Journal of Engineering for Gas Turbines and Power</i> , 2007 , 129, 394-403	1.7	25
94	Chemical kinetic study of the effect of a biofuel additive on jet-A1 combustion. <i>Journal of Physical Chemistry A</i> , 2007 , 111, 3992-4000	2.8	69
93	Homogeneous Charge Compression Ignition: formulation effect of a Diesel fuel on the Initiation and the Combustion - Potential of acetals Impact in a Diesel Base Fuel 2007 ,		2

92	Ignition and oxidation of 1-hexene/toluene mixtures in a shock tube and a jet-stirred reactor: Experimental and kinetic modeling study. <i>International Journal of Chemical Kinetics</i> , 2007 , 39, 518-538	1.4	17
91	Experimental and detailed kinetic modeling study of the high pressure oxidation of methanol sensitized by nitric oxide and nitrogen dioxide. <i>Proceedings of the Combustion Institute</i> , 2007 , 31, 411-4	18 ^{.9}	60
90	HCCI combustion: Effect of NO in EGR. <i>Proceedings of the Combustion Institute</i> , 2007 , 31, 2879-2886	5.9	125
89	Experimental and modelling study of gasoline surrogate mixtures oxidation in jet stirred reactor and shock tube. <i>Proceedings of the Combustion Institute</i> , 2007 , 31, 385-391	5.9	69
88	A wide-ranging kinetic modeling study of methyl butanoate combustion. <i>Proceedings of the Combustion Institute</i> , 2007 , 31, 305-311	5.9	201
87	A comparison of saturated and unsaturated C4 fatty acid methyl esters in an opposed flow diffusion flame and a jet stirred reactor. <i>Proceedings of the Combustion Institute</i> , 2007 , 31, 1015-1022	5.9	137
86	The oxidation of a diesel fuel at 100atm: Experimental study in a JSR and detailed chemical kinetic modeling. <i>Proceedings of the Combustion Institute</i> , 2007 , 31, 2939-2946	5.9	56
85	Rapeseed oil methyl ester oxidation over extended ranges of pressure, temperature, and equivalence ratio: Experimental and modeling kinetic study. <i>Proceedings of the Combustion Institute</i> , 2007, 31, 2955-2961	5.9	132
84	Kinetics of Natural Gas, Natural Gas/Syngas Mixtures Oxidation and Effect of Burnt Gas Recirculation: Experimental and Detailed Modeling 2007 , 387		6
83	Kinetics of Gas Turbine Liquid Fuels Combustion: Jet-A1 and Bio-Kerosene 2007 , 93		4
82	OXIDATION OF m-XYLENE IN A JSR: EXPERIMENTAL STUDY AND DETAILED CHEMICAL KINETIC MODELING. <i>Combustion Science and Technology</i> , 2007 , 179, 813-844	1.5	26
81	NOx formation pathways in lean-premixed-prevapourized combustion of fuels with carbon-to-hydrogen ratio between 0.25 and 0.88. <i>Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy,</i> 2007 , 221, 387-398	1.6	9
80	Kinetics of Kerosene Combustion Over Extended Conditions: Experimental and Modeling 2006 , 1		2
79	EFFECTS OF AIR CONTAMINATION ON THE COMBUSTION OF HYDROGEN E FFECT OF NO AND NO2 ADDITION ON HYDROGEN IGNITION AND OXIDATION KINETICS. <i>Combustion Science and Technology</i> , 2006 , 178, 1999-2024	1.5	50
78	Mutual sensitization of the oxidation of nitric oxide and a natural gas blend in a JSR at elevated pressure: experimental and detailed kinetic modeling study. <i>Journal of Physical Chemistry A</i> , 2006 , 110, 6608-16	2.8	24
77	Nitric oxide interactions with hydrocarbon oxidation in a jet-stirred reactor at 10 atm. <i>Combustion and Flame</i> , 2006 , 145, 512-520	5.3	55
76	Kinetics of 1-hexene oxidation in a JSR and a shock tube: Experimental and modeling study. <i>Combustion and Flame</i> , 2006 , 147, 67-78	5.3	50
75	The combustion of kerosene: Experimental results and kinetic modelling using 1- to 3-component surrogate model fuels. <i>Fuel</i> , 2006 , 85, 944-956	7.1	165

(2002-2006)

74	Occurrence of NO-reburning in MILD combustion evidenced via chemical kinetic modeling. <i>Fuel</i> , 2006 , 85, 2469-2478	7.1	46
73	Hydrogen-enriched natural gas blend oxidation under high-pressure conditions: Experimental and detailed chemical kinetic modeling. <i>International Journal of Hydrogen Energy</i> , 2006 , 31, 505-515	6.7	45
72	The ignition, oxidation, and combustion of kerosene: A review of experimental and kinetic modeling. <i>Progress in Energy and Combustion Science</i> , 2006 , 32, 48-92	33.6	396
71	Detonability of simple and representative components of pyrolysis products of kerosene: pulsed detonation engine application. <i>Shock Waves</i> , 2005 , 14, 283-291	1.6	9
70	EXPERIMENTAL STUDY AND DETAILED KINETIC MODELING OF THE MUTUAL SENSITIZATION OF THE OXIDATION OF NITRIC OXIDE, ETHYLENE, AND ETHANE. <i>Combustion Science and Technology</i> , 2005 , 177, 1767-1791	1.5	41
69	Experimental and kinetic modeling study of the effect of SO2 on the reduction of NO by ammonia. <i>Proceedings of the Combustion Institute</i> , 2005 , 30, 1211-1218	5.9	35
68	Experimental and detailed kinetic modeling study of hydrogen-enriched natural gas blend oxidation over extended temperature and equivalence ratio ranges. <i>Proceedings of the Combustion Institute</i> , 2005 , 30, 2631-2638	5.9	52
67	Experimental kinetic study of the oxidation of -xylene in a JSR and comprehensive detailed chemical kinetic modeling. <i>Combustion and Flame</i> , 2005 , 141, 281-297	5.3	54
66	The high-pressure reduction of nitric oxide by a natural gas blend. <i>Combustion and Flame</i> , 2005 , 143, 135-137	5.3	11
65	Experimental and kinetic modeling study of the effect of sulfur dioxide on the mutual sensitization of the oxidation of nitric oxide and methane. <i>International Journal of Chemical Kinetics</i> , 2005 , 37, 406-4	1 3 ·4	14
64	Experimental study and detailed kinetic modeling of the effect of exhaust gas on fuel combustion: mutual sensitization of the oxidation of nitric oxide and methane over extended temperature and pressure ranges. <i>Combustion and Flame</i> , 2005 , 140, 161-171	5.3	100
63	Experimental and modeling study of the oxidation of natural gas in a premixed flame, shock tube, and jet-stirred reactor. <i>Combustion and Flame</i> , 2004 , 137, 109-128	5.3	60
62	VAPORIZATION AND OXIDATION OF LIQUID FUEL DROPLETS AT HIGH TEMPERATURE AND HIGH PRESSURE: APPLICATION TO N-ALKANES AND VEGETABLE OIL METHYL ESTERS. <i>Combustion Science and Technology</i> , 2004 , 176, 499-529	1.5	34
61	Anharmonic thermochemistry of cyclopentadiene derivatives. <i>International Journal of Chemical Kinetics</i> , 2003 , 35, 453-463	1.4	15
60	Experimental and kinetic modeling study of the effect of NO and SO2 on the oxidation of CO?H2 mixtures. <i>International Journal of Chemical Kinetics</i> , 2003 , 35, 564-575	1.4	79
59	Experimental and kinetic modeling study of the reduction of NO by hydrocarbons and interactions with SO2 in a JSR at 1atm?. <i>Fuel</i> , 2003 , 82, 1033-1040	7.1	27
58	Experiments and Kinetic Modeling Study of NO-Reburning by Gases from Biomass Pyrolysis in a JSR. <i>Energy & Dog Biomass Pyrolysis</i> in a Dog Biomass Pyrolysis in a JSR. <i>Energy & Dog Biomass Pyrolysis</i> in a Dog Biomass Pyrolysis in a Dog Biomass P	4.1	52
57	Modeling the Oxidation of Mixtures of Primary Reference Automobile Fuels. <i>Energy & amp; Fuels</i> , 2002 , 16, 1186-1195	4.1	58

56	Oxidation, ignition and combustion of toluene: Experimental and detailed chemical kinetic modeling. <i>Physical Chemistry Chemical Physics</i> , 2002 , 4, 1846-1854	3.6	136
55	On the kinetics of hydrocarbons oxidation from natural gas to kerosene and diesel fuel. <i>Physical Chemistry Chemical Physics</i> , 2002 , 4, 2079-2094	3.6	213
54	Oxidation of dimethoxymethane in a jet-stirred reactor. <i>Combustion and Flame</i> , 2001 , 125, 1106-1117	5.3	63
53	The oxidation of n-Hexadecane: experimental and detailed kinetic modeling. <i>Combustion and Flame</i> , 2001 , 125, 1128-1137	5.3	74
52	The Low Temperature Oxidation of DME and Mutual Sensitization of the Oxidation of DME and Nitric Oxide: Experimental and Detailed Kinetic Modeling. <i>Combustion Science and Technology</i> , 2001 , 165, 61-84	1.5	54
51	Experimental and kinetic modeling of the reduction of NO by isobutane in a Jsr at 1 atm. <i>International Journal of Chemical Kinetics</i> , 2000 , 32, 365-377	1.4	20
50	Experimental and kinetic modeling of the reduction of NO by propene at 1 atm. <i>Combustion and Flame</i> , 2000 , 121, 651-661	5.3	29
49	The Oxidation of HCN and Reactions with Nitric Oxide: Experimental and Detailed Kinetic Modeling. <i>Combustion Science and Technology</i> , 2000 , 155, 105-127	1.5	15
48	NO-Reduction by Ethane in a JSR at Atmospheric Pressure: Experimental and Kinetic Modeling. <i>Combustion Science and Technology</i> , 2000 , 150, 181-203	1.5	18
47	Reduction of NO by n-Butane in a JSR: Experiments and Kinetic Modeling <i>Energy & Energy & Ene</i>	4.1	21
46	Mutual Sensitization of the Oxidation of Nitric Oxide and Simple Fuels Over an Extended Temperature Range: Experimental and Detailed Kinetic Modeling. <i>Combustion Science and Technology</i> , 1999 , 148, 27-57	1.5	37
45	Experimental and kinetic modeling of nitric oxide reduction by acetylene in an atmospheric pressure jet-stirred reactor. <i>Fuel</i> , 1999 , 78, 1245-1252	7.1	35
44	Oxidation of neopentane in a jet-stirred reactor from 1 to 10 atm: an experimental and detailed kinetic modeling study. <i>Combustion and Flame</i> , 1999 , 118, 191-203	5.3	17
43	The reduction of NO by ethylene in a jet-stirred reactor at 1 atm: experimental and kinetic modelling. <i>Combustion and Flame</i> , 1999 , 119, 494-504	5.3	36
42	A Comparative Study of the Kinetics of Benzene Formation from Unsaturated C2 to C4 Hydrocarbons. <i>Combustion and Flame</i> , 1998 , 113, 620-623	5.3	45
41	Oxidation of oxygenated octane improvers: MTBE, ETBE, DIPE, and TAME. <i>Proceedings of the Combustion Institute</i> , 1998 , 27, 353-360		35
40	The oxidation and ignition of dimethylether from low to high temperature (500 1 600 K): Experiments and kinetic modeling. <i>Proceedings of the Combustion Institute</i> , 1998 , 27, 361-369		128
39	The Ignition and Oxidation of Tetrahydropyran: Experiments and Kinetic Modeling. <i>Combustion Science and Technology</i> , 1997 , 129, 1-16	1.5	14

(1990-1997)

38	The ignition of oxetane in shock waves and oxidation in a jet-stirred reactor: An experimental and kinetic modeling study. <i>Combustion and Flame</i> , 1997 , 110, 409-417	5.3	6	
37	The oxidation of ethylene oxide in a jet-stirred reactor and its ignition in shock waves. <i>Combustion and Flame</i> , 1996 , 106, 62-68	5.3	26	
36	Chemical kinetic modeling of the supercritical-water oxidation of methanol. <i>Journal of Supercritical Fluids</i> , 1996 , 9, 33-42	4.2	63	
35	The ignition and oxidation of allene and propyne: Experiments and kinetic modeling. <i>Proceedings of the Combustion Institute</i> , 1996 , 26, 613-620		29	
34	Chemical kinetic study of dimethylether oxidation in a jet stirred reactor from 1 to 10 ATM: Experiments and kinetic modeling. <i>Proceedings of the Combustion Institute</i> , 1996 , 26, 627-632		93	
33	Experimental study of the oxidation of n-heptane in a jet stirred reactor from low to high temperature and pressures up to 40 atm. <i>Combustion and Flame</i> , 1995 , 101, 132-140	5.3	142	
32	Kerosene combustion at pressures up to 40 atm: Experimental study and detailed chemical kinetic modeling. <i>Proceedings of the Combustion Institute</i> , 1994 , 25, 919-926		88	
31	Natural gas and blends oxidation and ignition: Experiments and modeling. <i>Proceedings of the Combustion Institute</i> , 1994 , 25, 1563-1569		34	
30	Acetylene Oxidation in a JSR From 1 to 10 Atm and Comprehensive Kinetic Modeling. <i>Combustion Science and Technology</i> , 1994 , 102, 21-55	1.5	90	
29	High Pressure Oxidation of Liquid Fuels From Low to High Temperature. 1. n-Heptane and iso-Octane <i>Combustion Science and Technology</i> , 1993 , 95, 233-260	1.5	165	
28	A Kinetic Modeling Study of Propene Oxidation in JSR and Flame. <i>Combustion Science and Technology</i> , 1992 , 83, 167-185	1.5	34	
27	Kinetic modeling of propane oxidation and pyrolysis. <i>International Journal of Chemical Kinetics</i> , 1992 , 24, 813-837	1.4	51	
26	Kinetics of ethane oxidation. International Journal of Chemical Kinetics, 1991, 23, 437-455	1.4	84	
25	Methane Oxidation: Experimental and Kinetic Modeling Study. <i>Combustion Science and Technology</i> , 1991 , 77, 127-148	1.5	96	
24	Flash photolysis resonance fluorescence investigation of the gas-phase reactions of hydroxyl radicals with cyclic ethers. <i>The Journal of Physical Chemistry</i> , 1990 , 94, 1881-1883		32	
23	The gas phase UV absorption spectrum of CH3O2 radicals: A reinvestigation. <i>Journal of Photochemistry and Photobiology A: Chemistry</i> , 1990 , 51, 133-140	4.7	10	
22	Ethylene pyrolysis and oxidation: A kinetic modeling study. <i>International Journal of Chemical Kinetics</i> , 1990 , 22, 641-664	1.4	73	
21	A flash photolysis resonance fluorescence investigation of the reactions of Oxygen O(3P) atoms with aliphatic ethers and diethers in the gas phase. <i>International Journal of Chemical Kinetics</i> , 1990 , 22, 711-717	1.4	19	

20	A flash photolysis investigation of the gas phase uv absorption spectrum and self-reaction kinetics of the neopentylperoxy radical. <i>International Journal of Chemical Kinetics</i> , 1990 , 22, 1177-1187	1.4	6
19	Propyne Oxidation: A Kinetic Modeling Study. <i>Combustion Science and Technology</i> , 1990 , 71, 111-128	1.5	24
18	Kinetic measurements of the gas-phase reactions of hydroxyl radicals with hydroxy ethers, hydroxy ketones, and keto ethers. <i>The Journal of Physical Chemistry</i> , 1989 , 93, 7838-7840		51
17	The gas phase reactivity of aliphatic polyethers towards OH radicals: Measurements and predictions. <i>International Journal of Chemical Kinetics</i> , 1989 , 21, 1173-1180	1.4	18
16	Gas phase studies of substituted methylperoxy radicals: the UV absorption spectrum and self-reaction kinetics of CH3OCH2O2 Ithe reaction of CF2ClO2 with Cl atoms. <i>Journal of Photochemistry and Photobiology A: Chemistry</i> , 1989 , 48, 187-198	4.7	13
15	The gas phase reactions of hydroxyl radicals with a series of aliphatic ethers over the temperature range 240¼40 K. <i>International Journal of Chemical Kinetics</i> , 1988 , 20, 41-49	1.4	89
14	The gas phase reactions of hydroxyl radicals with a series of esters over the temperature range 240 40 K. <i>International Journal of Chemical Kinetics</i> , 1988 , 20, 177-186	1.4	96
13	The gas phase reactions of hydroxyl radicals with a series of carboxylic acids over the temperature range 240¼40 K. <i>International Journal of Chemical Kinetics</i> , 1988 , 20, 331-338	1.4	43
12	Rate constants for the gas phase reactions of OH with C5 through C7 aliphatic alcohols and ethers: Predicted and experimental values. <i>International Journal of Chemical Kinetics</i> , 1988 , 20, 541-547	1.4	75
11	The UV absorption spectra and kinetics of the self reactions of CH2ClO2 and CH2FO2 radicals in the gas phase. <i>International Journal of Chemical Kinetics</i> , 1988 , 20, 815-826	1.4	19
10	Energy transfer from vibrationally excited pentafluorobenzene to helium, xenon and water vapor. <i>Chemical Physics Letters</i> , 1988 , 144, 299-304	2.5	1
9	A flash photolysis investigation of the UV absorption spectrum and self-reaction kinetics of CH2ClCH2O2 radicals in the gas phase. <i>Chemical Physics Letters</i> , 1988 , 146, 589-595	2.5	12
8	Measurements of the gas phase UV absorption spectrum of C2H5O2 adicals and of the temperature dependence of the rate constant for their self-reaction. <i>Journal of Photochemistry and Photobiology A: Chemistry</i> , 1988 , 42, 173-185	4.7	22
7	Energy transfer from vibrationally excited SF6 to benzene, hexafluorobenzene, fluorobenzene and toluene. <i>Journal of Photochemistry and Photobiology A: Chemistry</i> , 1988 , 45, 151-165	4.7	1
6	Gas-phase reactions of hydroxyl radicals with the fuel additives methyl tert-butyl ether and tert-butyl alcohol over the temperature range 240-440 K. <i>Environmental Science & amp; Technology</i> , 1988 , 22, 842-4	10.3	62
5	Correlation between gas-phase and solution-phase reactivities of hydroxyl radicals towards saturated organic compounds. <i>The Journal of Physical Chemistry</i> , 1988 , 92, 5024-5028		46
4	A kinetic investigation of the gas-phase reactions of hydroxyl radicals with cyclic ketones and diones: mechanistic insights. <i>The Journal of Physical Chemistry</i> , 1988 , 92, 4375-4377		57
3	The temperature dependence of the rate constant for the hydroperoxy + methylperoxy gas-phase reaction. <i>The Journal of Physical Chemistry</i> , 1988 , 92, 3833-3836		25

LIST OF PUBLICATIONS

Flash photolysis kinetic absorption spectroscopy study of the gas-phase reaction hydroperoxy radical + ethylperoxy radical over the temperature range 228-380 K. *The Journal of Physical Chemistry*, **1988**, 92, 3836-3839

24

Kinetic measurements of the gas phase HO2+CH3O2 cross-disproportionation reaction at 298 K. *Chemical Physics Letters*, **1987**, 139, 513-518

2.5 22