Valerie Mizrahi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9491278/publications.pdf

Version: 2024-02-01

76196 95083 5,305 121 40 68 citations h-index g-index papers 136 136 136 5691 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	DNA-Dependent Binding of Nargenicin to DnaE1 Inhibits Replication in <i>Mycobacterium tuberculosis</i> . ACS Infectious Diseases, 2022, 8, 612-625.	1.8	11
2	Serial measurement of M. tuberculosis in blood from critically-ill patients with HIV-associated tuberculosis. EBioMedicine, 2022, 78, 103949.	2.7	5
3	<i>De Novo</i> Cobalamin Biosynthesis, Transport, and Assimilation and Cobalamin-Mediated Regulation of Methionine Biosynthesis in Mycobacterium smegmatis. Journal of Bacteriology, 2021, 203, .	1.0	5
4	Developing Synergistic Drug Combinations To Restore Antibiotic Sensitivity in Drug-Resistant Mycobacterium tuberculosis. Antimicrobial Agents and Chemotherapy, 2021, 65, .	1.4	16
5	Targeting <i>Mycobacterium tuberculosis</i> CoaBC through Chemical Inhibition of 4′-Phosphopantothenoyl- <scp>I</scp> -cysteine Synthetase (CoaB) Activity. ACS Infectious Diseases, 2021, 7, 1666-1679.	1.8	3
6	Shortening the Short Course of Tuberculosis Treatment. New England Journal of Medicine, 2021, 384, 1764-1765.	13.9	5
7	The Tuberculosis Drug Accelerator at year 10: what have we learned?. Nature Medicine, 2021, 27, 1333-1337.	15.2	32
8	Flow cytometry method for absolute counting and single-cell phenotyping of mycobacteria. Scientific Reports, 2021, 11, 18661.	1.6	11
9	Inhibiting Mycobacterium tuberculosis CoaBC by targeting an allosteric site. Nature Communications, 2021, 12, 143.	5.8	8
10	Capture and visualization of live Mycobacterium tuberculosis bacilli from tuberculosis patient bioaerosols. PLoS Pathogens, 2021, 17, e1009262.	2.1	30
11	Setting Our Sights on Infectious Diseases. ACS Infectious Diseases, 2020, 6, 3-13.	1.8	17
12	Biological Profiling Enables Rapid Mechanistic Classification of Phenotypic Screening Hits and Identification of KatG Activation-Dependent Pyridine Carboxamide Prodrugs With Activity Against Mycobacterium tuberculosis. Frontiers in Cellular and Infection Microbiology, 2020, 10, 582416.	1.8	6
13	6,11-Dioxobenzo[<i>f</i>]pyrido[1,2- <i>a</i>]indoles Kill <i>Mycobacterium tuberculosis</i> by Targeting Iron–Sulfur Protein Rv0338c (IspQ), A Putative Redox Sensor. ACS Infectious Diseases, 2020, 6, 3015-3025.	1.8	9
14	COVID-19 research in Africa. Science, 2020, 368, 919-919.	6.0	16
15	Renewing the Fight Against TB with an Old Vaccine. Cell, 2020, 180, 829-831.	13.5	6
16	Foam Cells Control Mycobacterium tuberculosis Infection. Frontiers in Microbiology, 2020, 11, 1394.	1.5	28
17	Arrayed CRISPRi and quantitative imaging describe the morphotypic landscape of essential mycobacterial genes. ELife, 2020, 9, .	2.8	50
18	Harnessing Biological Insight to Accelerate Tuberculosis Drug Discovery. Accounts of Chemical Research, 2019, 52, 2340-2348.	7.6	15

#	Article	IF	CITATIONS
19	Expanding the anti-TB arsenal. Science, 2019, 363, 457-458.	6.0	4
20	Synthesis and Structure–Activity relationship of 1-(5-isoquinolinesulfonyl)piperazine analogues as inhibitorsÂofÂMycobacterium tuberculosis IMPDH. European Journal of Medicinal Chemistry, 2019, 174, 309-329.	2.6	25
21	Transmission of drug-resistant tuberculosis in HIV-endemic settings. Lancet Infectious Diseases, The, 2019, 19, e77-e88.	4.6	47
22	Priming the tuberculosis drug pipeline: new antimycobacterial targets and agents. Current Opinion in Microbiology, 2018, 45, 39-46.	2.3	40
23	2-Mercapto-Quinazolinones as Inhibitors of Type II NADH Dehydrogenase and <i>Mycobacterium tuberculosis</i> : Structure–Activity Relationships, Mechanism of Action and Absorption, Distribution, Metabolism, and Excretion Characterization. ACS Infectious Diseases, 2018, 4, 954-969.	1.8	49
24	Mycobacterium tuberculosis. Trends in Microbiology, 2018, 26, 555-556.	3.5	101
25	Fragment-Based Approach to Targeting Inosine-5′-monophosphate Dehydrogenase (IMPDH) from <i>Mycobacterium tuberculosis</i> . Journal of Medicinal Chemistry, 2018, 61, 2806-2822.	2.9	51
26	The Coming of Age of Drug-Susceptibility Testing for Tuberculosis. New England Journal of Medicine, 2018, 379, 1474-1475.	13.9	15
27	Death of <i>Mycobacterium tuberculosis</i> by <scp>l</scp> -arginine starvation. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 9658-9660.	3.3	12
28	A19â€,The impact of HIV-1 on the evolution of Mycobacterium tuberculosis. Virus Evolution, 2018, 4, .	2.2	0
29	Expanding Benzoxazole-Based Inosine 5′-Monophosphate Dehydrogenase (IMPDH) Inhibitor Structure–Activity As Potential Antituberculosis Agents. Journal of Medicinal Chemistry, 2018, 61, 4739-4756.	2.9	33
30	Drug-resistant tuberculosis: challenges and opportunities for diagnosis and treatment. Current Opinion in Pharmacology, 2018, 42, 7-15.	1.7	121
31	The Influence of HIV on the Evolution of Mycobacterium tuberculosis. Molecular Biology and Evolution, 2017, 34, 1654-1668.	3.5	27
32	$\langle i \rangle N \langle i \rangle$ -Acetylglucosamine-1-Phosphate Transferase, WecA, as a Validated Drug Target in Mycobacterium tuberculosis. Antimicrobial Agents and Chemotherapy, 2017, 61, .	1.4	20
33	Susceptibility of Mycobacterium tuberculosis Cytochrome <i>bd</i> Oxidase Mutants to Compounds Targeting the Terminal Respiratory Oxidase, Cytochrome <i>c</i> Antimicrobial Agents and Chemotherapy, 2017, 61, .	1.4	49
34	Novel Antitubercular 6-Dialkylaminopyrimidine Carboxamides from Phenotypic Whole-Cell High Throughput Screening of a SoftFocus Library: Structure–Activity Relationship and Target Identification Studies. Journal of Medicinal Chemistry, 2017, 60, 10118-10134.	2.9	22
35	DNA Replication Fidelity in the Mycobacterium tuberculosis Complex. Advances in Experimental Medicine and Biology, 2017, 1019, 247-262.	0.8	11
36	The Inosine Monophosphate Dehydrogenase, GuaB2, Is a Vulnerable New Bactericidal Drug Target for Tuberculosis. ACS Infectious Diseases, 2017, 3, 5-17.	1.8	83

3

#	Article	IF	CITATIONS
37	Essential but Not Vulnerable: Indazole Sulfonamides Targeting Inosine Monophosphate Dehydrogenase as Potential Leads against <i>Mycobacterium tuberculosis</i> . ACS Infectious Diseases, 2017, 3, 18-33.	1.8	77
38	Identification of aminopyrimidineâ€sulfonamides as potent modulators of Wag31â€mediated cell elongation in mycobacteria. Molecular Microbiology, 2017, 103, 13-25.	1.2	22
39	Identification and validation of novel drug targets in Mycobacterium tuberculosis. Drug Discovery Today, 2017, 22, 503-509.	3.2	59
40	Detection of Mycobacterium tuberculosis bacilli in bio-aerosols from untreated TB patients. Gates Open Research, 2017, $1,11.$	2.0	58
41	Innate Immune Responses to Tuberculosis. , 2017, , 1-31.		O
42	Clinical Testing of Tuberculosis Vaccine Candidates. , 2017, , 193-211.		1
43	Human Immunology of Tuberculosis. , 2017, , 213-237.		6
44	The Immune Interaction between HIV-1 Infection and Mycobacterium tuberculosis., 2017,, 239-268.		1
45	Latent Mycobacterium tuberculosis Infection and Interferon-Gamma Release Assays., 2017,, 379-388.		0
46	Impact of the GeneXpert MTB/RIF Technology on Tuberculosis Control. , 2017, , 389-410.		1
47	The Role of Host Genetics (and Genomics) in Tuberculosis. , 2017, , 411-452.		0
48	Cytokines and Chemokines in Mycobacterium tuberculosis Infection., 2017,, 33-72.		10
49	The Evolutionary History, Demography, and Spread of the Mycobacterium tuberculosis Complex. , 2017, , 453-473.		O
50	Impact of Genetic Diversity on the Biology of Mycobacterium tuberculosis Complex Strains. , 2017, , 475-493.		0
51	Killing Mycobacterium tuberculosis In Vitro: What Model Systems Can Teach Us. , 2017, , 541-556.		O
52	DNA Replication in Mycobacterium tuberculosis. , 2017, , 581-606.		1
53	The Sec Pathways and Exportomes of Mycobacterium tuberculosis. , 2017, , 607-625.		1
54	The Role of ESX-1 in Mycobacterium tuberculosis Pathogenesis. , 2017, , 627-634.		1

#	Article	IF	Citations
55	Regulation of Immunity to Tuberculosis. , 2017, , 73-93.		1
56	Metabolic Perspectives on Persistence. , 2017, , 653-669.		2
57	Mycobacterium tuberculosisin the Face of Host-Imposed Nutrient Limitation. , 2017, , 699-715.		0
58	The Memory Immune Response to Tuberculosis. , 2017, , 95-115.		1
59	Animal Models of Tuberculosis: An Overview. , 2017, , 131-142.		0
60	Mouse and Guinea Pig Models of Tuberculosis. , 2017, , 143-162.		4
61	Experimental Infection Models of Tuberculosis in Domestic Livestock. , 2017, , 177-191.		0
62	Targeting DNA Replication and Repair for the Development of Novel Therapeutics against Tuberculosis. Frontiers in Molecular Biosciences, 2017, 4, 75.	1.6	42
63	Detection of Mycobacterium tuberculosis bacilli in bio-aerosols from untreated TB patients. Gates Open Research, 2017, $1,11.$	2.0	54
64	Translational Research for Tuberculosis Elimination: Priorities, Challenges, and Actions. PLoS Medicine, 2016, 13, e1001965.	3.9	50
65	Validation of CoaBC as a Bactericidal Target in the Coenzyme A Pathway of <i>Mycobacterium tuberculosis</i> . ACS Infectious Diseases, 2016, 2, 958-968.	1.8	62
66	Bioluminescent Reporters for Rapid Mechanism of Action Assessment in Tuberculosis Drug Discovery. Antimicrobial Agents and Chemotherapy, 2016, 60, 6748-6757.	1.4	38
67	Predictive modeling targets thymidylate synthase ThyX in Mycobacterium tuberculosis. Scientific Reports, 2016, 6, 27792.	1.6	25
68	Real-Time Investigation of Tuberculosis Transmission: Developing the Respiratory Aerosol Sampling Chamber (RASC). PLoS ONE, 2016, 11, e0146658.	1.1	40
69	The application of tetracyclineregulated gene expression systems in the validation of novel drug targets in Mycobacterium tuberculosis. Frontiers in Microbiology, 2015, 6, 812.	1.5	33
70	The Complex Mechanism of Antimycobacterial Action of 5-Fluorouracil. Chemistry and Biology, 2015, 22, 63-75.	6.2	90
71	Cleavage of the moaX-encoded fused molybdopterin synthase from Mycobacterium tuberculosis is necessary for activity. BMC Microbiology, 2015, 15, 22.	1.3	7
72	<i>bis</i> -Molybdopterin Guanine Dinucleotide Is Required for Persistence of Mycobacterium tuberculosis in Guinea Pigs. Infection and Immunity, 2015, 83, 544-550.	1.0	18

#	Article	IF	Citations
73	Diversity and disease pathogenesis in Mycobacterium tuberculosis. Trends in Microbiology, 2015, 23, 14-21.	3.5	64
74	Shortening Treatment for Tuberculosis â€" Back to Basics. New England Journal of Medicine, 2014, 371, 1642-1643.	13.9	57
75	The impact of drug resistance on <i>Mycobacterium tuberculosis</i> physiology: what can we learn from rifampicin?. Emerging Microbes and Infections, 2014, 3, 1-11.	3.0	100
76	Synthesis and biological evaluation of 2-aminothiazole derivatives as antimycobacterial and antiplasmodial agents. Bioorganic and Medicinal Chemistry Letters, 2014, 24, 560-564.	1.0	56
77	Respiratory Flexibility in Response to Inhibition of Cytochrome <i>c</i> Oxidase in Mycobacterium tuberculosis. Antimicrobial Agents and Chemotherapy, 2014, 58, 6962-6965.	1.4	116
78	Reaction intermediate analogues as bisubstrate inhibitors of pantothenate synthetase. Bioorganic and Medicinal Chemistry, 2014, 22, 1726-1735.	1.4	19
79	Molybdenum cofactor: A key component of Mycobacterium tuberculosis pathogenesis?. Critical Reviews in Microbiology, 2014, 40, 18-29.	2.7	45
80	Nucleotide Metabolism and DNA Replication. Microbiology Spectrum, 2014, 2, .	1.2	31
81	Vitamin B ₁₂ metabolism in <i>Mycobacterium tuberculosis</i> . Future Microbiology, 2013, 8, 1405-1418.	1.0	58
82	DNA Metabolism in Mycobacterial Pathogenesis. Current Topics in Microbiology and Immunology, 2013, 374, 27-51.	0.7	18
83	Identification of New Drug Targets and Resistance Mechanisms in Mycobacterium tuberculosis. PLoS ONE, 2013, 8, e75245.	1.1	223
84	A High-Throughput Screen against Pantothenate Synthetase (PanC) Identifies 3-Biphenyl-4-Cyanopyrrole-2-Carboxylic Acids as a New Class of Inhibitor with Activity against Mycobacterium tuberculosis. PLoS ONE, 2013, 8, e72786.	1.1	35
85	Pathway-Selective Sensitization of Mycobacterium tuberculosis for Target-Based Whole-Cell Screening. Chemistry and Biology, 2012, 19, 844-854.	6.2	123
86	Detection and treatment of subclinical tuberculosis. Tuberculosis, 2012, 92, 447-452.	0.8	33
87	A novel inducible mutagenesis system in Mycobacterium tuberculosis. FASEB Journal, 2012, 26, 222.1.	0.2	2
88	VapC Toxins from Mycobacterium tuberculosis Are Ribonucleases that Differentially Inhibit Growth and Are Neutralized by Cognate VapB Antitoxins. PLoS ONE, 2011, 6, e21738.	1.1	78
89	Functional Analysis of Molybdopterin Biosynthesis in Mycobacteria Identifies a Fused Molybdopterin Synthase in <i>Mycobacterium tuberculosis</i> Journal of Bacteriology, 2011, 193, 98-106.	1.0	48
90	Resuscitation-promoting factors as lytic enzymes for bacterial growth and signaling. FEMS Immunology and Medical Microbiology, 2010, 58, 39-50.	2.7	140

#	Article	IF	CITATIONS
91	Role of the DinB Homologs Rv1537 and Rv3056 in <i>Mycobacterium tuberculosis</i> Bacteriology, 2010, 192, 2220-2227.	1.0	61
92	Variation among Genome Sequences of H37Rv Strains of <i>Mycobacterium tuberculosis</i> from Multiple Laboratories. Journal of Bacteriology, 2010, 192, 3645-3653.	1.0	216
93	Essential roles for <i>i>imuA</i> ′- and <i>imuB</i> -encoded accessory factors in DnaE2-dependent mutagenesis in <i>Mycobacterium tuberculosis</i> . Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 13093-13098.	3.3	113
94	Function and Regulation of Class I Ribonucleotide Reductase-Encoding Genes in Mycobacteria. Journal of Bacteriology, 2009, 191, 985-995.	1.0	48
95	The resuscitationâ€promoting factors of <i>Mycobacterium tuberculosis</i> are required for virulence and resuscitation from dormancy but are collectively dispensable for growth <i>in vitro</i> Molecular Microbiology, 2008, 67, 672-684.	1.2	245
96	In Vitro Analysis of Rates and Spectra of Mutations in a Polymorphic Region of the Rv0746 PE_PGRS Gene of Mycobacterium tuberculosis. Journal of Bacteriology, 2007, 189, 2190-2195.	1.0	21
97	The Role of Resuscitation Promoting Factors in the Virulence of Mycobacterium tuberculosis. FASEB Journal, 2007, 21, A207.	0.2	1
98	A derivative of Mycobacterium smegmatis mc2155 that lacks the duplicated chromosomal region. Tuberculosis, 2006, 86, 438-444.	0.8	14
99	Tuberculosis Chemotherapy: the Influence of Bacillary Stress and Damage Response Pathways on Drug Efficacy. Clinical Microbiology Reviews, 2006, 19, 558-570.	5.7	129
100	DnaE2 Polymerase Contributes to In Vivo Survival and the Emergence of Drug Resistance in Mycobacterium tuberculosis. Cell, 2003, 113, 183-193.	13.5	383
101	Ribonucleotide Reduction in Mycobacterium tuberculosis: Function and Expression of Genes Encoding Class Ib and Class II Ribonucleotide Reductases. Infection and Immunity, 2003, 71, 6124-6131.	1.0	65
102	The role of RelMtb-mediated adaptation to stationary phase in long-term persistence of Mycobacterium tuberculosis in mice. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 10026-10031.	3.3	310
103	Construction and Phenotypic Characterization of an Auxotrophic Mutant of Mycobacterium tuberculosis Defective in I-Arginine Biosynthesis. Infection and Immunity, 2002, 70, 3080-3084.	1.0	81
104	Expression of Mycobacterium smegmatis Pyrazinamidase in Mycobacterium tuberculosis Confers Hypersensitivity to Pyrazinamide and Related Amides. Journal of Bacteriology, 2000, 182, 5479-5485.	1.0	47
105	The Stringent Response of Mycobacterium tuberculosis Is Required for Long-Term Survival. Journal of Bacteriology, 2000, 182, 4889-4898.	1.0	306
106	Production of mutants in amino acid biosynthesis genes of Mycobacterium tuberculosis by homologous recombination. Microbiology (United Kingdom), 1999, 145, 3497-3503.	0.7	77
107	DNA repair inMycobacterium tuberculosis. What have we learnt from the genome sequence?. Molecular Microbiology, 1998, 29, 1331-1339.	1.2	159
108	SOS induction in mycobacteria: analysis of the DNAâ€binding activity of a LexAâ€like repressor and its role in DNA damage induction of the recA gene from Mycobacterium smegmatis. Molecular Microbiology, 1997, 26, 643-653.	1.2	46

#	Article	IF	CITATIONS
109	Preclinical Efficacy Testing of New Drug Candidates. , 0, , 269-293.		3
110	Oxidative Phosphorylation as a Target Space for Tuberculosis: Success, Caution, and Future Directions., 0,, 295-316.		4
111	Targeting Phenotypically Tolerant <i>Mycobacterium tuberculosis</i> ., 0, , 317-360.		6
112	Tuberculosis Diagnostics: State of the Art and Future Directions. , 0, , 361-378.		2
113	Evolution of <i>Mycobacterium tuberculosis </i> Resistance., 0,, 495-515.		3
114	Acid-Fast Positive and Acid-Fast Negative < i>Mycobacterium tuberculosis < /i>: The Koch Paradox., 0,, 517-532.		2
115	Mycobacterial Biofilms: Revisiting Tuberculosis Bacilli in Extracellular Necrotizing Lesions. , 0, , 533-539.		2
116	Epigenetic Phosphorylation Control of <i>Mycobacterium tuberculosis </i> li>Infection and Persistence., 0, , 557-580.		1
117	The Minimal Unit of Infection: <i>Mycobacterium tuberculosis</i> in the Macrophage., 0,, 635-652.		3
118	Phenotypic Heterogeneity in <i>Mycobacterium tuberculosis </i> ., 0, , 671-697.		1
119	Pathology of Tuberculosis: How the Pathology of Human Tuberculosis Informs and Directs Animal Models. , 0, , 117-129.		1
120	Non-Human Primate Models of Tuberculosis. , 0, , 163-176.		0
121	Nucleotide Metabolism and DNA Replication. , 0, , 633-656.		1