Heather L Maclean

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9491154/publications.pdf Version: 2024-02-01

HEATHER | MACLEAN

#	Article	IF	CITATIONS
1	(Digital Presentation) Assessing the Energy Intensity of Product Purification in CO ₂ Electrolysis. ECS Meeting Abstracts, 2022, MA2022-01, 2445-2445.	0.0	Ο
2	Life cycle GHG assessment of a building restoration: Case study of a heritage industrial building in Toronto, Canada. Journal of Cleaner Production, 2021, 279, 123819.	9.3	35
3	Does location matter? Investigating the spatial and socio-economic drivers of residential energy use in Dar es Salaam. Environmental Research Letters, 2021, 16, 024041.	5.2	7
4	Greenhouse Gas Emission Mitigation Pathways for Urban Passenger Land Transport under Ambitious Climate Targets. Environmental Science & Technology, 2021, 55, 8236-8246.	10.0	18
5	Economic and environmental competitiveness of high temperature electrolysis for hydrogen production. International Journal of Hydrogen Energy, 2021, 46, 21274-21288.	7.1	32
6	Implications of passive energy efficiency measures on life cycle greenhouse gas emissions of high-rise residential building envelopes. Energy and Buildings, 2021, 249, 111202.	6.7	37
7	Capturing variability in material intensity of single-family dwellings: A case study of Toronto, Canada. Resources, Conservation and Recycling, 2021, 175, 105885.	10.8	14
8	Downstream of the CO ₂ Electrolyzer: Assessing the Energy Intensity of Product Separation. ACS Energy Letters, 2021, 6, 4405-4412.	17.4	53
9	Life cycle assessment of emerging technologies: Evaluation techniques at different stages of market and technical maturity. Journal of Industrial Ecology, 2020, 24, 11-25.	5.5	103
10	Electrification of light-duty vehicle fleet alone will not meet mitigation targets. Nature Climate Change, 2020, 10, 1102-1107.	18.8	120
11	Regional variations in life cycle greenhouse gas emissions of canolaâ€derived jet fuel produced in western Canada. GCB Bioenergy, 2020, 12, 818-833.	5.6	9
12	Optimizing the Use of a Constrained Resource to Minimize Regional Greenhouse Gas Emissions: The Case Study of Slag in Ontario's Concrete. Environmental Science & Technology, 2020, 54, 12840-12849.	10.0	4
13	Modeling Greenhouse Gas Emissions from Oil Sands Partial Upgrading Technologies Using a Life Cycle-Based Model. Energy & Fuels, 2020, 34, 12757-12770.	5.1	2
14	Modelling future patterns of urbanization, residential energy use and greenhouse gas emissions in Dar es Salaam with the Shared Socio-Economic Pathways. Journal of Cleaner Production, 2020, 254, 119998.	9.3	20
15	Taxonomy of uncertainty in environmental life cycle assessment of infrastructure projects. Environmental Research Letters, 2020, 15, 083003.	5.2	29
16	Environmental Aspects of Biotechnology. Advances in Biochemical Engineering/Biotechnology, 2019, 173, 77-119.	1.1	5
17	Characterizing Variability in Oil Sands Upgrading Greenhouse Gas Emissions Intensity. Energy & Fuels, 2019, 33, 8907-8919.	5.1	2
18	A Dynamic Fleet Model of U.S Light-Duty Vehicle Lightweighting and Associated Greenhouse Gas Emissions from 2016 to 2050. Environmental Science & Technology, 2019, 53, 2199-2208.	10.0	48

HEATHER L MACLEAN

#	Article	IF	CITATIONS
19	Comparison of U.S. Midwest corn stover ethanol greenhouse gas emissions from GREET and GHGenius. Applied Energy, 2019, 235, 591-601.	10.1	23
20	Statistically Enhanced Model of In Situ Oil Sands Extraction Operations: An Evaluation of Variability in Greenhouse Gas Emissions. Environmental Science & Technology, 2018, 52, 947-954.	10.0	16
21	Evaluation of Variability in Greenhouse Gas Intensity of Canadian Oil Sands Surface Mining and Upgrading Operations. Environmental Science & Technology, 2018, 52, 11941-11951.	10.0	11
22	COPTEM: A Model to Investigate the Factors Driving Crude Oil Pipeline Transportation Emissions. Environmental Science & Technology, 2018, 52, 337-345.	10.0	10
23	Process modeling of hydrodeoxygenation to produce renewable jet fuel and other hydrocarbon fuels. Fuel, 2017, 196, 298-305.	6.4	46
24	Financial analyses of potential biojet fuel production technologies. Biofuels, Bioproducts and Biorefining, 2017, 11, 665-681.	3.7	20
25	Review of the Fuel Saving, Life Cycle GHG Emission, and Ownership Cost Impacts of Lightweighting Vehicles with Different Powertrains. Environmental Science & Technology, 2017, 51, 8215-8228.	10.0	53
26	Life Cycle Assessment for Economists. Annual Review of Resource Economics, 2017, 9, 361-381.	3.7	19
27	Techno-economic analysis and life cycle assessment of hydrogen production from natural gas using current and emerging technologies. International Journal of Hydrogen Energy, 2017, 42, 18894-18909.	7.1	230
28	Life cycle GHG emissions and lifetime costs of medium-duty diesel and battery electric trucks in Toronto, Canada. Transportation Research, Part D: Transport and Environment, 2017, 55, 91-98.	6.8	53
29	Development and Application of a Life Cycle-Based Model to Evaluate Greenhouse Gas Emissions of Oil Sands Upgrading Technologies. Environmental Science & Technology, 2016, 50, 13574-13584.	10.0	9
30	Life cycle assessment of lignocellulosic ethanol: a review of key factors and methods affecting calculated GHG emissions and energy use. Current Opinion in Biotechnology, 2016, 38, 63-70.	6.6	59
31	Carbon debt repayment or carbon sequestration parity? Lessons from a forest bioenergy case study in Ontario, Canada. GCB Bioenergy, 2015, 7, 704-716.	5.6	43
32	Investigation of uncertainties associated with the production of n-butanol through ethanol catalysis in sugarcane biorefineries. Bioresource Technology, 2015, 190, 242-250.	9.6	13
33	Exploring impacts of process technology development and regional factors on life cycle greenhouse gas emissions of corn stover ethanol. Renewable Energy, 2015, 76, 726-734.	8.9	36
34	Life Cycle Air Emissions Impacts and Ownership Costs of Light-Duty Vehicles Using Natural Gas As a Primary Energy Source. Environmental Science & Technology, 2015, 49, 5151-5160.	10.0	15
35	Implications of land class and environmental factors on life cycle <scp>GHG</scp> emissions of Miscanthus as a bioenergy feedstock. GCB Bioenergy, 2014, 6, 401-413.	5.6	32
36	Implications of emissions timing on the costâ€effectiveness of greenhouse gas mitigation strategies: application to forest bioenergy systems. GCB Bioenergy, 2014, 6, 414-424.	5.6	7

HEATHER L MACLEAN

#	Article	IF	CITATIONS
37	Life cycle greenhouse gas emissions of electricity generation from corn cobs in Ontario, Canada. Biofuels, Bioproducts and Biorefining, 2014, 8, 568-578.	3.7	9
38	Impact of cellulase production on environmental and financial metrics for lignocellulosic ethanol. Biofuels, Bioproducts and Biorefining, 2013, 7, 303-313.	3.7	74
39	The carbon neutrality assumption for forest bioenergy: A case study for northwestern Ontario. Forestry Chronicle, 2011, 87, 644-652.	0.6	28
40	Impacts of coâ€location, coâ€production, and process energy source on life cycle energy use and greenhouse gas emissions of lignocellulosic ethanol. Biofuels, Bioproducts and Biorefining, 2011, 5, 279-292.	3.7	25
41	Comparing High and Low Residential Density: Life-Cycle Analysis of Energy Use and Greenhouse Gas Emissions. Journal of the Urban Planning and Development Division, ASCE, 2006, 132, 10-21.	1.7	458
42	The Four Pillars of Sustainable Urban Transportation. Transport Reviews, 2005, 25, 393-414.	8.8	146
43	Life-Cycle Energy Analysis of a Water Distribution System. Journal of Infrastructure Systems, 2004, 10, 120-130.	1.8	144
44	Life Cycle Assessment of Automobile/Fuel Options. Environmental Science & Technology, 2003, 37, 5445-5452.	10.0	109
45	A Life-Cycle Comparison of Alternative Automobile Fuels. Journal of the Air and Waste Management Association, 2000, 50, 1769-1779.	1.9	60
46	Life-Cycle Analysis of Alternative Automobile Fuel/Propulsion Technologies. Environmental Science & Technology, 2000, 34, 3598-3605.	10.0	83