Liliana Attisano

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9490954/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Mechanism of activation of the TGF- \hat{I}^2 receptor. Nature, 1994, 370, 341-347.	13.7	2,237
2	Signal Transduction by the TGF-beta Superfamily. Science, 2002, 296, 1646-1647.	6.0	1,230
3	SARA, a FYVE Domain Protein that Recruits Smad2 to the TGFÎ ² Receptor. Cell, 1998, 95, 779-791.	13.5	888
4	MADR2 Is a Substrate of the TGF \hat{I}^2 Receptor and Its Phosphorylation Is Required for Nuclear Accumulation and Signaling. Cell, 1996, 87, 1215-1224.	13.5	695
5	Smad2 and Smad3 Positively and Negatively Regulate TGFβ-Dependent Transcription through the Forkhead DNA-Binding Protein FAST2. Molecular Cell, 1998, 2, 109-120.	4.5	499
6	Smads as transcriptional co-modulators. Current Opinion in Cell Biology, 2000, 12, 235-243.	2.6	497
7	The Hippo Pathway Regulates Wnt/β-Catenin Signaling. Developmental Cell, 2010, 18, 579-591.	3.1	490
8	The TGFbeta Superfamily Signaling Pathway. Wiley Interdisciplinary Reviews: Developmental Biology, 2013, 2, 47-63.	5.9	450
9	TβRI Phosphorylation of Smad2 on Ser465 and Ser467 Is Required for Smad2-Smad4 Complex Formation and Signaling. Journal of Biological Chemistry, 1997, 272, 27678-27685.	1.6	425
10	The daf-4 gene encodes a bone morphogenetic protein receptor controlling C. elegans dauer larva development. Nature, 1993, 365, 644-649.	13.7	368
11	Synergistic Cooperation between Hypoxia and Transforming Growth Factor-β Pathways on Human Vascular Endothelial Growth Factor Gene Expression. Journal of Biological Chemistry, 2001, 276, 38527-38535.	1.6	340
12	Characterization and relationship of dpp receptors encoded by the saxophone and thick veins genes in Drosophila. Cell, 1994, 78, 251-261.	13.5	317
13	Regulation of Planar Cell Polarity by Smurf Ubiquitin Ligases. Cell, 2009, 137, 295-307.	13.5	289
14	TGF-β receptors and actions. Biochimica Et Biophysica Acta - Molecular Cell Research, 1994, 1222, 71-80.	1.9	273
15	Identification of two bone morphogenetic protein type I receptors in Drosophila and evidence that Brk25D is a decapentaplegic receptor. Cell, 1994, 78, 239-250.	13.5	268
16	Regulation of the TGFÎ ² signalling pathway by ubiquitin-mediated degradation. Oncogene, 2004, 23, 2071-2078.	2.6	249
17	The Smad pathway. Cytokine and Growth Factor Reviews, 2000, 11, 5-13.	3.2	245
18	Activation of LIMK1 by binding to the BMP receptor, BMPRII, regulates BMP-dependent dendritogenesis. EMBO Journal, 2004, 23, 4792-4801.	3.5	197

LILIANA ATTISANO

#	Article	IF	CITATIONS
19	DRAGON, a Bone Morphogenetic Protein Co-receptor. Journal of Biological Chemistry, 2005, 280, 14122-14129.	1.6	193
20	FoxH1 (Fast) functions to specify the anterior primitive streak in the mouse. Genes and Development, 2001, 15, 1257-1271.	2.7	191
21	Mads and Smads in TGFβ signalling. Current Opinion in Cell Biology, 1998, 10, 188-194.	2.6	188
22	Foxh1 Is Essential for Development of the Anterior Heart Field. Developmental Cell, 2004, 7, 331-345.	3.1	173
23	The Smads. Genome Biology, 2001, 2, reviews3010.1.	13.9	136
24	Signal integration in TGF-Î ² , WNT, and Hippo pathways. F1000prime Reports, 2013, 5, 17.	5.9	132
25	Inhibition of Tankyrases Induces Axin Stabilization and Blocks Wnt Signalling in Breast Cancer Cells. PLoS ONE, 2012, 7, e48670.	1.1	126
26	TGF-Î ² receptors. Molecular Reproduction and Development, 1992, 32, 99-104.	1.0	113
27	Cross-talk between the p42/p44 MAP Kinase and Smad Pathways in Transforming Growth Factor β1-induced Furin Gene Transactivation. Journal of Biological Chemistry, 2001, 276, 33986-33994.	1.6	112
28	MARK4 inhibits Hippo signaling to promote proliferation and migration of breast cancer cells. EMBO Reports, 2017, 18, 420-436.	2.0	106
29	Endoglin increases eNOS expression by modulating Smad2 protein levels and Smad2-dependent TGF-Î ² signaling. Journal of Cellular Physiology, 2007, 210, 456-468.	2.0	101
30	The transcriptional role of Smads and FAST (FoxH1) in TGFβ and activin signalling. Molecular and Cellular Endocrinology, 2001, 180, 3-11.	1.6	86
31	TGFÂ and Wnt pathway cross-talk. Cancer and Metastasis Reviews, 2004, 23, 53-61.	2.7	83
32	BMP-2 and OP-1 exert direct and opposite effects on renal branching morphogenesis. American Journal of Physiology - Renal Physiology, 1997, 273, F961-F975.	1.3	75
33	A feed forward loop enforces YAP/TAZ signaling during tumorigenesis. Nature Communications, 2018, 9, 3510.	5.8	75
34	Dominant-Negative Smad2 Mutants Inhibit Activin/Vg1 Signaling and Disrupt Axis Formation in Xenopus. Developmental Biology, 1999, 207, 364-379.	0.9	72
35	DLG5 connects cell polarity and Hippo signaling protein networks by linking PAR-1 with MST1/2. Genes and Development, 2016, 30, 2696-2709.	2.7	67
36	Microtubule Stabilization by Bone Morphogenetic Protein Receptor-Mediated Scaffolding of c-Jun N-Terminal Kinase Promotes Dendrite Formation. Molecular and Cellular Biology, 2010, 30, 2241-2250.	1.1	63

Liliana Attisano

#	Article	IF	CITATIONS
37	Ubiquitin-Dependent Regulation of TGÎ ² Signaling in Cancer. Neoplasia, 2006, 8, 677-688.	2.3	56
38	Robust production of uniform human cerebral organoids from pluripotent stem cells. Life Science Alliance, 2020, 3, e202000707.	1.3	52
39	Genome-Wide Identification of Smad/Foxh1 Targets Reveals a Role for Foxh1 in Retinoic Acid Regulation and Forebrain Development. Developmental Cell, 2008, 14, 411-423.	3.1	51
40	Involvement of Smads in TGF?1-induced furin (fur) transcription. Journal of Cellular Physiology, 2001, 188, 264-273.	2.0	47
41	Application of an integrated physical and functional screening approach to identify inhibitors of the Wnt pathway. Molecular Systems Biology, 2009, 5, 315.	3.2	44
42	TheDrosophilatype II receptor, Wishful thinking, binds BMP and myoglianin to activate multiple TGFβ family signaling pathways. FEBS Letters, 2005, 579, 4615-4621.	1.3	34
43	A multiplexed, next generation sequencing platform for high-throughput detection of SARS-CoV-2. Nature Communications, 2021, 12, 1405.	5.8	33
44	NUAK1 promotes organ fibrosis via YAP and TGF-β/SMAD signaling. Science Translational Medicine, 2022, 14, eaaz4028.	5.8	33
45	Arhgef7 promotes activation of the Hippo pathway core kinase Lats. EMBO Journal, 2014, 33, 2997-3011.	3.5	32
46	Foxh1 recruits Gsc to negatively regulate Mixl1 expression during early mouse development. EMBO Journal, 2007, 26, 3132-3143.	3.5	31
47	Modeling the Control of TGF-β/Smad Nuclear Accumulation by the Hippo Pathway Effectors, Taz/Yap. IScience, 2020, 23, 101416.	1.9	28
48	Proneural genes define ground-state rules to regulate neurogenic patterning and cortical folding. Neuron, 2021, 109, 2847-2863.e11.	3.8	26
49	Recent advances in understanding contextual TGFÎ ² signaling. F1000Research, 2017, 6, 749.	0.8	22
50	Extracellular phosphorylation drives the formation of neuronal circuitry. Nature Chemical Biology, 2019, 15, 1035-1042.	3.9	22
51	Comparison of SARS-CoV-2 indirect and direct RT-qPCR detection methods. Virology Journal, 2021, 18, 99.	1.4	22
52	Mothers Against Decapentaplegic-Related Protein 2 Expression in Avian Granulosa Cells Is Up-Regulated by Transforming Growth Factor β during Ovarian Follicular Development*. Endocrinology, 1997, 138, 3659-3665.	1.4	18
53	The omega-3 hydroxy fatty acid 7(<i>S</i>)-HDHA is a high-affinity PPARα ligand that regulates brain neuronal morphology. Science Signaling, 2022, 15, .	1.6	17
54	Characterization of mitochondrial health from human peripheral blood mononuclear cells to cerebral organoids derived from induced pluripotent stem cells. Scientific Reports, 2021, 11, 4523.	1.6	16

LILIANA ATTISANO

#	Article	IF	CITATIONS
55	Mothers Against Decapentaplegic-Related Protein 2 Expression in Avian Granulosa Cells Is Up-Regulated by Transforming Growth Factor β during Ovarian Follicular Development. , 0, .		12
56	Analysis of Hippo and TGFÎ ² signaling in polarizing epithelial cells and mouse embryos. Differentiation, 2016, 91, 109-118.	1.0	7
57	TGFÎ ² Signal Transduction. , 2010, , 521-532.		7
58	A Skeleton in the Closet: Neogenin Guides Bone Development. Developmental Cell, 2010, 19, 1-2.	3.1	6
59	Sumoylation differentially regulates Goosecoid-mediated transcriptional repression. Experimental Cell Research, 2008, 314, 1585-1594.	1.2	4
60	A Role for Hipk in the Hippo Pathway. Science Signaling, 2013, 6, pe18.	1.6	4
61	Production of Phenotypically Uniform Human Cerebral Organoids from Pluripotent Stem Cells. Bio-protocol, 2021, 11, e3985.	0.2	4
62	The return of Dr Jekyll in cancer metastasis. EMBO Journal, 2012, 31, 4486-4487.	3.5	3
63	High-content imaging and analysis to quantify the nuclear to cytoplasmic ratio of TGF \hat{I}^2 and hippo effectors in mammalian cells. STAR Protocols, 2021, 2, 100632.	0.5	0
64	Identification of NUAK1/2 Regulators in the Hippo Signaling Pathway. FASEB Journal, 2022, 36, .	0.2	0