
Yunfei Cai

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9490751/publications.pdf Version: 2024-02-01

YUNEEL CAL

#	Article	IF	CITATIONS
1	Recent Advances on Piancatelli Reactions and Related Cascade Processes. Synthesis, 2022, 54, 589-599.	2.3	9
2	<scp>HY5</scp> inhibits <i>in vitro</i> shoot stem cell niches initiation via directly repressing pluripotency and cytokinin pathways. Plant Journal, 2022, 110, 781-801.	5.7	5
3	Construction of metal (Mn, Ce, Eu)-containing species in CN nanocomposites with photo-responsive oxidase-mimicking activity for multi-antioxidant discrimination. New Journal of Chemistry, 2022, 46, 6670-6676.	2.8	1
4	<i>Retro</i> -Aza-Piancatelli Rearrangement Triggered Cascade Reaction of Methyl Furylacrylates with Anilines to Access Cyclopenta[<i>b</i>]pyrrolidinones. Journal of Organic Chemistry, 2022, 87, 855-865.	3.2	6
5	Remarkable Activity of Potassium-Modified Carbon Nitride for Heterogeneous Photocatalytic Decarboxylative Alkyl/Acyl Radical Addition and Reductive Dimerization of <i>para</i> -Quinone Methides. ACS Sustainable Chemistry and Engineering, 2021, 9, 2367-2377.	6.7	38
6	Heterogeneous photocatalytic cyanomethylarylation of alkenes with acetonitrile: synthesis of diverse nitrogenous heterocyclic compounds. Beilstein Journal of Organic Chemistry, 2021, 17, 1171-1180.	2.2	8
7	Catalytic Asymmetric Radical-Mediated Three-Component Piancatelli-Type Rearrangement of Furylalkenes. ACS Catalysis, 2021, 11, 10198-10207.	11.2	15
8	Semi-heterogeneous photocatalytic fluoroalkylation-distal functionalization of unactivated alkenes with R _F SO ₂ Na under air atmosphere. Green Chemistry, 2021, 23, 9577-9582.	9.0	19
9	Ln(III)/Chiral BrÃ,nsted Acid Catalyzed Asymmetric Cascade Ring Opening/Aza-Piancatelli Rearrangement of D–A Cyclopropanes. Organic Letters, 2020, 22, 9016-9021.	4.6	23
10	A triple-channel sensing array for protein discrimination based on multi-photoresponsive g-C3N4. Mikrochimica Acta, 2020, 187, 449.	5.0	4
11	A g-C ₃ N ₄ -based heterogeneous photocatalyst for visible light mediated aerobic benzylic C–H oxygenations. Green Chemistry, 2019, 21, 6116-6122.	9.0	69
12	Asymmetric Catalytic Halofunctionalization of $\hat{I}\pm,\hat{I}^2$ -Unsaturated Carbonyl Compounds. Journal of Organic Chemistry, 2019, 84, 1-13.	3.2	47
13	Heterogeneous Visible-Light Photoredox Catalysis with Graphitic Carbon Nitride for α-Aminoalkyl Radical Additions, Allylations, and Heteroarylations. ACS Catalysis, 2018, 8, 9471-9476.	11.2	112
14	Catalytic Ester and Amide to Amine Interconversion: Nickel atalyzed Decarbonylative Amination of Esters and Amides by Câ^'O and Câ^'C Bond Activation. Angewandte Chemie, 2017, 129, 4346-4349.	2.0	35
15	Catalytic Ester and Amide to Amine Interconversion: Nickel atalyzed Decarbonylative Amination of Esters and Amides by Câ^'O and Câ^'C Bond Activation. Angewandte Chemie - International Edition, 2017, 56, 4282-4285.	13.8	148
16	An Intronless β-amyrin Synthase Gene is More Efficient in Oleanolic Acid Accumulation than its Paralog in Gentiana straminea. Scientific Reports, 2016, 6, 33364.	3.3	16
17	Catalytic Asymmetric Intra- and Intermolecular Haloetherification of Enones: An Efficient Approach to (â^')-Centrolobine. ACS Catalysis, 2016, 6, 7778-7783.	11.2	44
18	Catalytic Asymmetric Piancatelli Rearrangement: BrÃ,nsted Acid Catalyzed 4Ï€â€Electrocyclization for the Synthesis of Multisubstituted Cyclopentenones. Angewandte Chemie - International Edition, 2016, 55, 14126-14130.	13.8	60

Yunfei Cai

#	Article	IF	CITATIONS
19	Catalytic Asymmetric Piancatelli Rearrangement: BrÃ,nsted Acid Catalyzed 4Ï€â€Electrocyclization for the Synthesis of Multisubstituted Cyclopentenones. Angewandte Chemie, 2016, 128, 14332-14336.	2.0	16
20	Asymmetric Synthesis of Spirocyclic Oxindoleâ€Fused Tetrahydrothiophenes <i>via N,N′â€</i> Dioxide–Nickel(II) Catalyzed Domino Reaction of 1,4â€Dithianeâ€2,5â€diol with 3â€Alkenyloxin Advanced Synthesis and Catalysis, 2015, 357, 695-700.	dokess	49
21	Diastereoselectively Switchable Asymmetric Haloaminocyclization for the Synthesis of Cyclic Sulfamates. Chemistry - A European Journal, 2015, 21, 6386-6389.	3.3	38
22	Genotyping and metabolite characterization of somatic hybrids between Arabidopsis thaliana and Swertia mussotii. In Vitro Cellular and Developmental Biology - Plant, 2015, 51, 360-368.	2.1	1
23	Catalytic asymmetric [3+2] cycloaddition of aromatic aldehydes with oxiranes by C–C bond cleavage of epoxides: highly efficient synthesis of chiral 1,3-dioxolanes. Chemical Communications, 2014, 50, 2161.	4.1	45
24	Catalytic Asymmetric [8+2] Cycloaddition: Synthesis of Cycloheptatrieneâ€Fused Pyrrole Derivatives. Angewandte Chemie - International Edition, 2013, 52, 5604-5607.	13.8	87
25	Iron-catalyzed asymmetric haloamination reactions. Chemical Communications, 2013, 49, 8054.	4.1	69
26	Highly Stereoselective Conjugate Addition and αâ€Alkynylation Reaction with Electronâ€Deficient Alkynes Catalyzed by Chiral Scandium(III) Complexes. Chemistry - A European Journal, 2013, 19, 8591-8596.	3.3	32
27	Asymmetric Synthesis of 2,3â€Dihydroquinolinâ€4â€one Derivatives Catalyzed by a Chiral Bisguanidium Salt. Chemistry - A European Journal, 2012, 18, 15922-15926.	3.3	44
28	Catalytic Asymmetric Sulfenylation of Unprotected 3-Substituted Oxindoles. Organic Letters, 2012, 14, 2726-2729.	4.6	95
29	Highly Enantioselective Fluorination of Unprotected 3-Substituted Oxindoles: One-Step Synthesis of BMS 204352 (MaxiPost). Journal of Organic Chemistry, 2012, 77, 9148-9155.	3.2	73
30	A Catalytic Asymmetric Ringâ€Expansion Reaction of Isatins and αâ€Alkylâ€Î±â€Diazoesters: Highly Efficient Synthesis of Functionalized 2â€Quinolone Derivatives. Angewandte Chemie - International Edition, 2012, 51, 8644-8647.	13.8	120
31	Enantioselective aza-Michael reaction of hydrazide to chalcones through the nonactivated amine moiety conjugated addition. Chemical Communications, 2011, 47, 4016.	4.1	29
32	Enantioselective One-Pot Synthesis of 2-Amino-4-(indol-3-yl)-4 <i>H</i> -Chromenes. Organic Letters, 2011, 13, 4910-4913.	4.6	97
33	Catalytic Asymmetric Chloroamination Reaction of α,β-Unsaturated γ-Keto Esters and Chalcones. Journal of the American Chemical Society, 2011, 133, 5636-5639.	13.7	152
34	Asymmetric Iodoamination of Chalcones and 4â€Arylâ€4â€oxobutenoates Catalyzed by a Complex Based on Scandium(III) and a <i>N,N′â€</i> Dioxide Ligand. Chemistry - A European Journal, 2011, 17, 14916-14921.	3.3	82
35	Highly Enantioselective Zincâ€Catalyzed Friedel–Crafts Alkylation of Indoles with Ethyl Trifluoropyruvate. Advanced Synthesis and Catalysis, 2010, 352, 3174-3178.	4.3	31
36	Highly Enantioselective Conjugate Addition of Thioglycolate to Chalcones Catalyzed by Lanthanum: Low Catalyst Loading and Remarkable Chiral Amplification. Angewandte Chemie - International Edition, 2010, 49, 4290-4293.	13.8	93

Yunfei Cai

#	Article	IF	CITATIONS
37	Catalytic Asymmetric Bromoamination of Chalcones: Highly Efficient Synthesis of Chiral αâ€Bromoâ€Î²â€Amino Ketone Derivatives. Angewandte Chemie - International Edition, 2010, 49, 6160-6164.	13.8	180
38	Chiral N,N′-dioxide-Yb(III) complexes catalyzed enantioselective hydrophosphonylation of aldehydes. Tetrahedron Letters, 2010, 51, 4175-4178.	1.4	39
39	Highly enantioselective α-chlorination of cyclic β-ketoesters catalyzed by N,N′-Dioxide using NCS as the chlorine source. Chemical Communications, 2010, 46, 1250.	4.1	67
40	Facile and Efficient Enantioselective Strecker Reaction of Ketimines by Chiral Sodium Phosphate. Chemistry - A European Journal, 2009, 15, 6008-6014.	3.3	101
41	High-frequency embryogenesis and regeneration of plants with high content of gentiopicroside from the Chinese medicinal plant Gentiana straminea Maxim In Vitro Cellular and Developmental Biology - Plant, 2009, 45, 730-739.	2.1	28