Vilhelm A Bohr

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/9490653/vilhelm-a-bohr-publications-by-year.pdf

Version: 2024-04-23

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

28,208 386 151 93 h-index g-index citations papers 8.4 7.18 32,143 429 avg, IF L-index ext. papers ext. citations

#	Paper	IF	Citations
386	Neurogenesis in Aging and Age-related Neurodegenerative Diseases <i>Ageing Research Reviews</i> , 2022 , 101636	12	4
385	Alteration of mitochondrial homeostasis is an early event in a model of human tauopathy. <i>Aging</i> , 2021 , 13, 23876-23894	5.6	3
384	A brain proteomic signature of incipient Alzheimer@ disease in young A carriers identifies novel drug targets. <i>Science Advances</i> , 2021 , 7, eabi8178	14.3	2
383	CDK2 phosphorylation of Werner protein (WRN) contributes to WRNQ DNA double-strand break repair pathway choice. <i>Aging Cell</i> , 2021 , 20, e13484	9.9	1
382	NEK1 deficiency affects mitochondrial functions and the transcriptome of key DNA repair pathways. <i>Mutagenesis</i> , 2021 , 36, 223-236	2.8	O
381	NAD supplementation prevents STING-induced senescence in ataxia telangiectasia by improving mitophagy. <i>Aging Cell</i> , 2021 , 20, e13329	9.9	18
380	DNA polymerase lbutperforms DNA polymerase lin key mitochondrial base excision repair activities. <i>DNA Repair</i> , 2021 , 99, 103050	4.3	5
379	Skin Abnormalities in Disorders with DNA Repair Defects, Premature Aging, and Mitochondrial Dysfunction. <i>Journal of Investigative Dermatology</i> , 2021 , 141, 968-975	4.3	7
378	LEO1 is a partner for Cockayne syndrome protein B (CSB) in response to transcription-blocking DNA damage. <i>Nucleic Acids Research</i> , 2021 , 49, 6331-6346	20.1	2
377	Signaling by cGAS-STING in Neurodegeneration, Neuroinflammation, and Aging. <i>Trends in Neurosciences</i> , 2021 , 44, 83-96	13.3	21
376	Worldwide Studies on Cockayne Syndrome are Needed. <i>Neurology India</i> , 2021 , 69, 367-368	0.7	
375	Current and emerging roles of Cockayne syndrome group B (CSB) protein. <i>Nucleic Acids Research</i> , 2021 , 49, 2418-2434	20.1	11
374	Self-assembly of multi-component mitochondrial nucleoids via phase separation. <i>EMBO Journal</i> , 2021 , 40, e107165	13	14
373	Base excision repair causes age-dependent accumulation of single-stranded DNA breaks that contribute to Parkinson disease pathology. <i>Cell Reports</i> , 2021 , 36, 109668	10.6	4
372	NAD supplementation reduces neuroinflammation and cell senescence in a transgenic mouse model of Alzheimer@ disease via cGAS-STING. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2021 , 118,	11.5	17
371	Olfactory dysfunction in aging and neurodegenerative diseases. <i>Ageing Research Reviews</i> , 2021 , 70, 101	14/12/6	7
370	NAD augmentation with nicotinamide riboside improves lymphoid potential of Atm and old mice HSCs. <i>Npj Aging and Mechanisms of Disease</i> , 2021 , 7, 25	5.5	4

369	Molecular markers of DNA repair and brain metabolism correlate with cognition in centenarians <i>GeroScience</i> , 2021 , 44, 103	8.9	1
368	Cytosolic Self-DNA-A Potential Source of Chronic Inflammation in Aging <i>Cells</i> , 2021 , 10,	7.9	1
367	DNA damage and mitochondria in cancer and aging. Carcinogenesis, 2020, 41, 1625-1634	4.6	18
366	Interaction between RECQL4 and OGG1 promotes repair of oxidative base lesion 8-oxoG and is regulated by SIRT1 deacetylase. <i>Nucleic Acids Research</i> , 2020 , 48, 6530-6546	20.1	9
365	DNA damage invokes mitophagy through a pathway involving Spata18. <i>Nucleic Acids Research</i> , 2020 , 48, 6611-6623	20.1	13
364	Hippocampal tau oligomerization early in tau pathology coincides with a transient alteration of mitochondrial homeostasis and DNA repair in a mouse model of tauopathy. <i>Acta Neuropathologica Communications</i> , 2020 , 8, 25	7.3	19
363	Short-term NAD supplementation prevents hearing loss in mouse models of Cockayne syndrome. <i>Npj Aging and Mechanisms of Disease</i> , 2020 , 6, 1	5.5	24
362	Cockayne syndrome group A and B proteins function in rRNA transcription through nucleolin regulation. <i>Nucleic Acids Research</i> , 2020 , 48, 2473-2485	20.1	22
361	Biological sex and DNA repair deficiency drive Alzheimer@ disease via systemic metabolic remodeling and brain mitochondrial dysfunction. <i>Acta Neuropathologica</i> , 2020 , 140, 25-47	14.3	15
360	Mitophagy and DNA damage signaling in human aging. <i>Mechanisms of Ageing and Development</i> , 2020 , 186, 111207	5.6	24
359	The NAD-mitophagy axis in healthy longevity and in artificial intelligence-based clinical applications. <i>Mechanisms of Ageing and Development</i> , 2020 , 185, 111194	5.6	22
358	Spatial Transcriptomics Reveals Genes Associated with Dysregulated Mitochondrial Functions and Stress Signaling in Alzheimer Disease. <i>IScience</i> , 2020 , 23, 101556	6.1	18
357	Cockayne syndrome proteins CSA and CSB maintain mitochondrial homeostasis through NAD signaling. <i>Aging Cell</i> , 2020 , 19, e13268	9.9	14
356	Re-equilibration of imbalanced NAD metabolism ameliorates the impact of telomere dysfunction. <i>EMBO Journal</i> , 2020 , 39, e103420	13	16
355	Heterochromatin: an epigenetic point of view in aging. <i>Experimental and Molecular Medicine</i> , 2020 , 52, 1466-1474	12.8	28
354	Ageing as a risk factor for neurodegenerative disease. <i>Nature Reviews Neurology</i> , 2019 , 15, 565-581	15	634
353	NEIL1 stimulates neurogenesis and suppresses neuroinflammation after stress. <i>Free Radical Biology and Medicine</i> , 2019 , 141, 47-58	7.8	10
352	Loss of ARID1A in Tumor Cells Renders Selective Vulnerability to Combined Ionizing Radiation and PARP Inhibitor Therapy. <i>Clinical Cancer Research</i> , 2019 , 25, 5584-5594	12.9	44

351	Acetylation of Werner protein at K1127 and K1117 is important for nuclear trafficking and DNA repair. <i>DNA Repair</i> , 2019 , 79, 22-31	4.3	4
350	Senolytic therapy alleviates Alassociated oligodendrocyte progenitor cell senescence and cognitive deficits in an Alzheimer@ disease model. <i>Nature Neuroscience</i> , 2019 , 22, 719-728	25.5	315
349	Mitophagy inhibits amyloid-land tau pathology and reverses cognitive deficits in models of Alzheimer@ disease. <i>Nature Neuroscience</i> , 2019 , 22, 401-412	25.5	546
348	Mitochondria in the signaling pathways that control longevity and health span. <i>Ageing Research Reviews</i> , 2019 , 54, 100940	12	59
347	Deletion of OGG1 Results in a Differential Signature of Oxidized Purine Base Damage in mtDNA Regions. <i>International Journal of Molecular Sciences</i> , 2019 , 20,	6.3	6
346	Cockayne syndrome group B deficiency reduces H3K9me3 chromatin remodeler SETDB1 and exacerbates cellular aging. <i>Nucleic Acids Research</i> , 2019 , 47, 8548-8562	20.1	17
345	Lamin A/C promotes DNA base excision repair. <i>Nucleic Acids Research</i> , 2019 , 47, 11709-11728	20.1	17
344	Emerging Antitumor Activities of the Bitter Melon (Momordica charantia). <i>Current Protein and Peptide Science</i> , 2019 , 20, 296-301	2.8	6
343	Assessment of NADmetabolism in human cell cultures, erythrocytes, cerebrospinal fluid and primate skeletal muscle. <i>Analytical Biochemistry</i> , 2019 , 572, 1-8	3.1	14
342	Diminished OPA1 expression and impaired mitochondrial morphology and homeostasis in Aprataxin-deficient cells. <i>Nucleic Acids Research</i> , 2019 , 47, 4086-4110	20.1	13
341	NAD augmentation restores mitophagy and limits accelerated aging in Werner syndrome. <i>Nature Communications</i> , 2019 , 10, 5284	17.4	89
340	NAD+Metabolism in Aging and Cancer. Annual Review of Cancer Biology, 2019, 3, 105-130	13.3	30
339	A high-throughput screen to identify novel small molecule inhibitors of the Werner Syndrome Helicase-Nuclease (WRN). <i>PLoS ONE</i> , 2019 , 14, e0210525	3.7	13
338	Toward understanding genomic instability, mitochondrial dysfunction and aging. <i>FEBS Journal</i> , 2019 , 286, 1058-1073	5.7	32
337	Sarcopenia, Aging and Prospective Interventional Strategies. Current Medicinal Chemistry, 2018, 25, 558	3845559	6 23
336	Nicotinamide Improves Aspects of Healthspan, but Not Lifespan, in Mice. <i>Cell Metabolism</i> , 2018 , 27, 66	7- 6 7. 6 .6	24152
335	Natural polyphenols as sirtuin 6 modulators. <i>Scientific Reports</i> , 2018 , 8, 4163	4.9	81
334	Multiple RPAs make WRN syndrome protein a superhelicase. <i>Nucleic Acids Research</i> , 2018 , 46, 4689-469	98 20.1	20

(2017-2018)

333	NAD supplementation normalizes key Alzheimer@ features and DNA damage responses in a new AD mouse model with introduced DNA repair deficiency. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2018 , 115, E1876-E1885	11.5	195
332	Enhanced mitochondrial DNA repair of the common disease-associated variant, Ser326Cys, of hOGG1 through small molecule intervention. <i>Free Radical Biology and Medicine</i> , 2018 , 124, 149-162	7.8	6
331	Regulation of the Intranuclear Distribution of the Cockayne Syndrome Proteins. <i>Scientific Reports</i> , 2018 , 8, 17490	4.9	6
330	Acidic domain of WRNp is critical for autophagy and up-regulates age associated proteins. <i>DNA Repair</i> , 2018 , 68, 1-11	4.3	5
329	Genome instability in Alzheimer disease. <i>Mechanisms of Ageing and Development</i> , 2017 , 161, 83-94	5.6	62
328	Mitophagy in neurodegeneration and aging. <i>Neurochemistry International</i> , 2017 , 109, 202-209	4.4	179
327	Mitophagy and Alzheimer@ Disease: Cellular and Molecular Mechanisms. <i>Trends in Neurosciences</i> , 2017 , 40, 151-166	13.3	330
326	Tomatidine enhances lifespan and healthspan in C. elegans through mitophagy induction via the SKN-1/Nrf2 pathway. <i>Scientific Reports</i> , 2017 , 7, 46208	4.9	78
325	NAP1L1 accelerates activation and decreases pausing to enhance nucleosome remodeling by CSB. <i>Nucleic Acids Research</i> , 2017 , 45, 4696-4707	20.1	18
324	Base Excision Repair in Aging 2017 , 773-803		1
323	NAD: The convergence of DNA repair and mitophagy. <i>Autophagy</i> , 2017 , 13, 442-443	10.2	28
323	NAD: The convergence of DNA repair and mitophagy. <i>Autophagy</i> , 2017 , 13, 442-443 Rev1 contributes to proper mitochondrial function via the PARP-NAD-SIRT1-PGC1laxis. <i>Scientific Reports</i> , 2017 , 7, 12480	10.2	28
	Rev1 contributes to proper mitochondrial function via the PARP-NAD-SIRT1-PGC1 axis. Scientific		
322	Rev1 contributes to proper mitochondrial function via the PARP-NAD-SIRT1-PGC1 (axis. Scientific Reports, 2017, 7, 12480) NAD in Aging: Molecular Mechanisms and Translational Implications. Trends in Molecular Medicine,	4.9	12
322	Rev1 contributes to proper mitochondrial function via the PARP-NAD-SIRT1-PGC1 (Exis. Scientific Reports, 2017, 7, 12480) NAD in Aging: Molecular Mechanisms and Translational Implications. Trends in Molecular Medicine, 2017, 23, 899-916 Cell cycle-dependent phosphorylation regulates RECQL4 pathway choice and ubiquitination in DNA	4.9	12 217
322 321 320	Rev1 contributes to proper mitochondrial function via the PARP-NAD-SIRT1-PGC1laxis. <i>Scientific Reports</i> , 2017 , 7, 12480 NAD in Aging: Molecular Mechanisms and Translational Implications. <i>Trends in Molecular Medicine</i> , 2017 , 23, 899-916 Cell cycle-dependent phosphorylation regulates RECQL4 pathway choice and ubiquitination in DNA double-strand break repair. <i>Nature Communications</i> , 2017 , 8, 2039 In Vitro and In Vivo Detection of Mitophagy in Human Cells, C. Elegans, and Mice. <i>Journal of</i>	4.9 11.5	12 217 49
322 321 320 319	Rev1 contributes to proper mitochondrial function via the PARP-NAD-SIRT1-PGC1 (Eaxis. Scientific Reports, 2017, 7, 12480) NAD in Aging: Molecular Mechanisms and Translational Implications. Trends in Molecular Medicine, 2017, 23, 899-916 Cell cycle-dependent phosphorylation regulates RECQL4 pathway choice and ubiquitination in DNA double-strand break repair. Nature Communications, 2017, 8, 2039 In Vitro and In Vivo Detection of Mitophagy in Human Cells, C. Elegans, and Mice. Journal of Visualized Experiments, 2017, Cockayne syndrome: Clinical features, model systems and pathways. Ageing Research Reviews, 2017	4.9 11.5 17.4 1.6	12 217 49 18

315	Recent Advances in Understanding Werner Syndrome. F1000Research, 2017, 6, 1779	3.6	45
314	Single-molecule imaging reveals a common mechanism shared by G-quadruplex-resolving helicases. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2016 , 113, 8448-53	11.5	66
313	A ketogenic diet accelerates neurodegeneration in mice with induced mitochondrial DNA toxicity in the forebrain. <i>Neurobiology of Aging</i> , 2016 , 48, 34-47	5.6	22
312	Active Control of Repetitive Structural Transitions between Replication Forks and Holliday Junctions by Werner Syndrome Helicase. <i>Structure</i> , 2016 , 24, 1292-1300	5.2	8
311	RECQL4 Promotes DNA End Resection in Repair of DNA Double-Strand Breaks. <i>Cell Reports</i> , 2016 , 16, 161-173	10.6	57
310	Acquired Localized Cutis Laxa due to Increased Elastin Turnover. <i>Case Reports in Dermatology</i> , 2016 , 8, 42-51	1.1	5
309	Cockayne syndrome group A and B proteins converge on transcription-linked resolution of non-B DNA. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2016 , 113, 12502-	12507	56
308	RECQL4 helicase has oncogenic potential in sporadic breast cancers. <i>Journal of Pathology</i> , 2016 , 238, 495-501	9.4	29
307	Effects of Sex, Strain, and Energy Intake on Hallmarks of Aging in Mice. Cell Metabolism, 2016, 23, 1093-	-12141@	245
306	Nuclear DNA damage signalling to mitochondria in ageing. <i>Nature Reviews Molecular Cell Biology</i> , 2016 , 17, 308-21	48.7	222
305	RECQL5 has unique strand annealing properties relative to the other human RecQ helicase proteins. <i>DNA Repair</i> , 2016 , 37, 53-66	4.3	13
304	Clinicopathological and prognostic significance of RECQL5 helicase expression in breast cancers. <i>Carcinogenesis</i> , 2016 , 37, 63-71	4.6	25
303	Mitochondrial SIRT3 Mediates Adaptive Responses of Neurons to Exercise and Metabolic and Excitatory Challenges. <i>Cell Metabolism</i> , 2016 , 23, 128-42	24.6	203
302	Camptothecin targets WRN protein: mechanism and relevance in clinical breast cancer. <i>Oncotarget</i> , 2016 , 7, 13269-84	3.3	31
301	WRN regulates pathway choice between classical and alternative non-homologous end joining. <i>Nature Communications</i> , 2016 , 7, 13785	17.4	57
300	JNK Phosphorylates SIRT6 to Stimulate DNA Double-Strand Break Repair in Response to Oxidative Stress by Recruiting PARP1 to DNA Breaks. <i>Cell Reports</i> , 2016 , 16, 2641-2650	10.6	70
299	NAD Replenishment Improves Lifespan and Healthspan in Ataxia Telangiectasia Models via Mitophagy and DNA Repair. <i>Cell Metabolism</i> , 2016 , 24, 566-581	24.6	273
298	Partial loss of the DNA repair scaffolding protein, Xrcc1, results in increased brain damage and reduced recovery from ischemic stroke in mice. <i>Neurobiology of Aging</i> , 2015 , 36, 2319-2330	5.6	15

(2015-2015)

297	Regulation of the human Suv3 helicase on DNA by inorganic cofactors. <i>Biochimie</i> , 2015 , 108, 160-8	4.6	1
296	Increased deoxythymidine triphosphate levels is a feature of relative cognitive decline. <i>Mitochondrion</i> , 2015 , 25, 34-7	4.9	8
295	Differential and Concordant Roles for Poly(ADP-Ribose) Polymerase 1 and Poly(ADP-Ribose) in Regulating WRN and RECQL5 Activities. <i>Molecular and Cellular Biology</i> , 2015 , 35, 3974-89	4.8	12
294	DNA Damage, DNA Repair, Aging, and Neurodegeneration. <i>Cold Spring Harbor Perspectives in Medicine</i> , 2015 , 5,	5.4	186
293	A research agenda for aging in China in the 21st century. Ageing Research Reviews, 2015, 24, 197-205	12	198
292	Protecting the mitochondrial powerhouse. <i>Trends in Cell Biology</i> , 2015 , 25, 158-70	18.3	194
291	Slow mitochondrial repair of 5QAMP renders mtDNA susceptible to damage in APTX deficient cells. <i>Scientific Reports</i> , 2015 , 5, 12876	4.9	20
290	Human exonuclease 1 (EXO1) activity characterization and its function on flap structures. <i>Bioscience Reports</i> , 2015 , 35,	4.1	29
289	A novel method for determining human ex vivo submaximal skeletal muscle mitochondrial function. <i>Journal of Physiology</i> , 2015 , 593, 3991-4010	3.9	11
288	The role of DNA base excision repair in brain homeostasis and disease. <i>DNA Repair</i> , 2015 , 32, 172-179	4.3	23
287	CSB interacts with SNM1A and promotes DNA interstrand crosslink processing. <i>Nucleic Acids Research</i> , 2015 , 43, 247-58	20.1	36
286	SLX4 contributes to telomere preservation and regulated processing of telomeric joint molecule intermediates. <i>Nucleic Acids Research</i> , 2015 , 43, 5912-23	20.1	42
285	The DNA structure and sequence preferences of WRN underlie its function in telomeric recombination events. <i>Nature Communications</i> , 2015 , 6, 8331	17.4	10
284	The impact of base excision DNA repair in age-related neurodegenerative diseases. <i>Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis</i> , 2015 , 776, 31-9	3.3	43
283	Loss of NEIL1 causes defects in olfactory function in mice. <i>Neurobiology of Aging</i> , 2015 , 36, 1007-12	5.6	11
282	Asbestos-induced pulmonary fibrosis is augmented in 8-oxoguanine DNA glycosylase knockout mice. <i>American Journal of Respiratory Cell and Molecular Biology</i> , 2015 , 52, 25-36	5.7	38
281	DNA polymerase deficiency leads to neurodegeneration and exacerbates Alzheimer disease phenotypes. <i>Nucleic Acids Research</i> , 2015 , 43, 943-59	20.1	75
	Defective mitochondrial respiration, altered dNTP pools and reduced AP endonuclease 1 activity in		

279	Di-(2-ethylhexyl) phthalate inhibits DNA replication leading to hyperPARylation, SIRT1 attenuation, and mitochondrial dysfunction in the testis. <i>Scientific Reports</i> , 2014 , 4, 6434	4.9	34
278	Overexpression of DNA ligase III in mitochondria protects cells against oxidative stress and improves mitochondrial DNA base excision repair. <i>DNA Repair</i> , 2014 , 16, 44-53	4.3	29
277	Defective mitophagy in XPA via PARP-1 hyperactivation and NAD(+)/SIRT1 reduction. <i>Cell</i> , 2014 , 157, 882-896	56.2	417
276	BDNF and exercise enhance neuronal DNA repair by stimulating CREB-mediated production of apurinic/apyrimidinic endonuclease 1. <i>NeuroMolecular Medicine</i> , 2014 , 16, 161-174	4.6	96
275	A high-fat diet and NAD(+) activate Sirt1 to rescue premature aging in cockayne syndrome. <i>Cell Metabolism</i> , 2014 , 20, 840-855	24.6	232
274	Transient overexpression of Werner protein rescues starvation induced autophagy in Werner syndrome cells. <i>Biochimica Et Biophysica Acta - Molecular Basis of Disease</i> , 2014 , 1842, 2387-94	6.9	13
273	The role of RecQ helicases in non-homologous end-joining. <i>Critical Reviews in Biochemistry and Molecular Biology</i> , 2014 , 49, 463-72	8.7	13
272	Contribution of defective mitophagy to the neurodegeneration in DNA repair-deficient disorders. <i>Autophagy</i> , 2014 , 10, 1468-9	10.2	34
271	Human longevity and variation in DNA damage response and repair: study of the contribution of sub-processes using competitive gene-set analysis. <i>European Journal of Human Genetics</i> , 2014 , 22, 1131	-ē ∙3	20
270	RECQ helicase RECQL4 participates in non-homologous end joining and interacts with the Ku complex. <i>Carcinogenesis</i> , 2014 , 35, 2415-24	4.6	40
269	Base excision DNA repair levels in mitochondrial lysates of Alzheimer@ disease. <i>Neurobiology of Aging</i> , 2014 , 35, 1293-300	5.6	47
268	Cockayne Syndrome group B protein stimulates NEIL2 DNA glycosylase activity. <i>Mechanisms of Ageing and Development</i> , 2014 , 135, 1-14	5.6	29
267	Human RecQ helicases in DNA repair, recombination, and replication. <i>Annual Review of Biochemistry</i> , 2014 , 83, 519-52	29.1	348
266	Dynamics of the DNA repair proteins WRN and BLM in the nucleoplasm and nucleoli. <i>European Biophysics Journal</i> , 2014 , 43, 509-16	1.9	7
265	Mitochondria-targeted Ogg1 and aconitase-2 prevent oxidant-induced mitochondrial DNA damage in alveolar epithelial cells. <i>Journal of Biological Chemistry</i> , 2014 , 289, 6165-76	5.4	72
264	Catalytic activities of Werner protein are affected by adduction with 4-hydroxy-2-nonenal. <i>Nucleic Acids Research</i> , 2014 , 42, 11119-35	20.1	10
263	Human RECQL1 participates in telomere maintenance. <i>Nucleic Acids Research</i> , 2014 , 42, 5671-88	20.1	32
262	Serines 440 and 467 in the Werner syndrome protein are phosphorylated by DNA-PK and affects its dynamics in response to DNA double strand breaks. <i>Aging</i> , 2014 , 6, 70-81	5.6	19

261	A small molecule inhibitor of the BLM helicase modulates chromosome stability in human cells. <i>Chemistry and Biology</i> , 2013 , 20, 55-62		101
260	The role of DNA repair in brain related disease pathology. <i>DNA Repair</i> , 2013 , 12, 578-87	4.3	93
259	Mitochondrial deficiency in Cockayne syndrome. <i>Mechanisms of Ageing and Development</i> , 2013 , 134, 275	5 86	52
258	Multiple interaction partners for Cockayne syndrome proteins: implications for genome and transcriptome maintenance. <i>Mechanisms of Ageing and Development</i> , 2013 , 134, 212-24	5.6	21
257	Functional deficit associated with a missense Werner syndrome mutation. <i>DNA Repair</i> , 2013 , 12, 414-21	4.3	14
256	The RECQL4 protein, deficient in Rothmund-Thomson syndrome is active on telomeric D-loops containing DNA metabolism blocking lesions. <i>DNA Repair</i> , 2013 , 12, 518-28	4.3	20
255	Human RECQL5: guarding the crossroads of DNA replication and transcription and providing backup capability. <i>Critical Reviews in Biochemistry and Molecular Biology</i> , 2013 , 48, 289-99	8.7	25
254	Modulation of DNA base excision repair during neuronal differentiation. <i>Neurobiology of Aging</i> , 2013 , 34, 1717-27	5.6	43
253	Base excision repair in the mammalian brain: implication for age related neurodegeneration. <i>Mechanisms of Ageing and Development</i> , 2013 , 134, 440-8	5.6	45
252	Site-specific noncovalent interaction of the biopolymer poly(ADP-ribose) with the Werner syndrome protein regulates protein functions. <i>ACS Chemical Biology</i> , 2013 , 8, 179-88	4.9	36
251	RECQL5 plays co-operative and complementary roles with WRN syndrome helicase. <i>Nucleic Acids Research</i> , 2013 , 41, 881-99	20.1	21
250	The RecQ helicase RECQL5 participates in psoralen-induced interstrand cross-link repair. <i>Carcinogenesis</i> , 2013 , 34, 2218-30	4.6	9
249	Regulatory interplay of Cockayne syndrome B ATPase and stress-response gene ATF3 following genotoxic stress. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2013 , 110, E2261-70	11.5	31
248	A novel diagnostic tool reveals mitochondrial pathology in human diseases and aging. <i>Aging</i> , 2013 , 5, 192-208	5.6	41
247	Overview of DNA Repair Pathways 2013 , 1-24		
246	Xeroderma pigmentosum group A protein modulates mitophagy through regulation of mitochondrial-associated proteins. <i>FASEB Journal</i> , 2013 , 27, lb468	0.9	
245	Recruitment and retention dynamics of RECQL5 at DNA double strand break sites. <i>DNA Repair</i> , 2012 , 11, 624-35	4.3	27
244	Repair of persistent strand breaks in the mitochondrial genome. <i>Mechanisms of Ageing and Development</i> , 2012 , 133, 169-75	5.6	53

243	RECQL4 in genomic instability and aging. Trends in Genetics, 2012, 28, 624-31	8.5	56
242	Sporadic Alzheimer disease fibroblasts display an oxidative stress phenotype. <i>Free Radical Biology and Medicine</i> , 2012 , 53, 1371-80	7.8	44
241	Mitochondrial base excision repair in mouse synaptosomes during normal aging and in a model of Alzheimer disease. <i>Neurobiology of Aging</i> , 2012 , 33, 694-707	5.6	30
240	RECQL4 localizes to mitochondria and preserves mitochondrial DNA integrity. <i>Aging Cell</i> , 2012 , 11, 456-	-656 9	82
239	RecQ helicases in DNA double strand break repair and telomere maintenance. <i>Mutation Research</i> - Fundamental and Molecular Mechanisms of Mutagenesis, 2012 , 736, 15-24	3.3	58
238	RECQ1 is required for cellular resistance to replication stress and catalyzes strand exchange on stalled replication fork structures. <i>Cell Cycle</i> , 2012 , 11, 4252-65	4.7	40
237	RAPADILINO RECQL4 mutant protein lacks helicase and ATPase activity. <i>Biochimica Et Biophysica Acta - Molecular Basis of Disease</i> , 2012 , 1822, 1727-34	6.9	17
236	Quantitative analysis of WRN exonuclease activity by isotope dilution mass spectrometry. <i>Mechanisms of Ageing and Development</i> , 2012 , 133, 575-9	5.6	5
235	DNA repair: front and center and not going away!. Methods in Molecular Biology, 2012, 920, 1-6	1.4	
234	Age-related disease association of endogenous EH2AX foci in mononuclear cells derived from leukapheresis. <i>PLoS ONE</i> , 2012 , 7, e45728	3.7	23
233	Involvement of Werner syndrome protein in MUTYH-mediated repair of oxidative DNA damage. <i>Nucleic Acids Research</i> , 2012 , 40, 8449-59	20.1	21
232	The human RecQ helicases BLM and RECQL4 cooperate to preserve genome stability. <i>Nucleic Acids Research</i> , 2012 , 40, 6632-48	20.1	43
231	Cockayne syndrome group B protein prevents the accumulation of damaged mitochondria by promoting mitochondrial autophagy. <i>Journal of Experimental Medicine</i> , 2012 , 209, 855-69	16.6	152
230	RECQL4, the protein mutated in Rothmund-Thomson syndrome, functions in telomere maintenance. <i>Journal of Biological Chemistry</i> , 2012 , 287, 196-209	5.4	79
229	Endonuclease VIII-like 1 (NEIL1) promotes short-term spatial memory retention and protects from ischemic stroke-induced brain dysfunction and death in mice. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2012 , 109, 14948-53	11.5	54
228	Human RECQL5 participates in the removal of endogenous DNA damage. <i>Molecular Biology of the Cell</i> , 2012 , 23, 4273-85	3.5	27
227	RECQL5 cooperates with Topoisomerase II alpha in DNA decatenation and cell cycle progression. <i>Nucleic Acids Research</i> , 2012 , 40, 1621-35	20.1	39

225	Nucleolin inhibits G4 oligonucleotide unwinding by Werner helicase. <i>PLoS ONE</i> , 2012 , 7, e35229	3.7	22
224	DNA binding residues in the RQC domain of Werner protein are critical for its catalytic activities. <i>Aging</i> , 2012 , 4, 417-29	5.6	22
223	The helicase and ATPase activities of RECQL4 are compromised by mutations reported in three human patients. <i>Aging</i> , 2012 , 4, 790-802	5.6	10
222	DNA secondary structure of the released strand stimulates WRN helicase action on forked duplexes without coordinate action of WRN exonuclease. <i>Biochemical and Biophysical Research Communications</i> , 2011 , 411, 684-9	3.4	3
221	DNA repair deficiency in neurodegeneration. <i>Progress in Neurobiology</i> , 2011 , 94, 166-200	10.9	235
220	The human Suv3 helicase interacts with replication protein A and flap endonuclease 1 in the nucleus. <i>Biochemical Journal</i> , 2011 , 440, 293-300	3.8	16
219	Evidence that OGG1 glycosylase protects neurons against oxidative DNA damage and cell death under ischemic conditions. <i>Journal of Cerebral Blood Flow and Metabolism</i> , 2011 , 31, 680-92	7.3	84
218	Xeroderma pigmentosum and other diseases of human premature aging and DNA repair: molecules to patients. <i>Mechanisms of Ageing and Development</i> , 2011 , 132, 340-7	5.6	26
217	The excitatory neurotransmitter glutamate stimulates DNA repair to increase neuronal resiliency. <i>Mechanisms of Ageing and Development</i> , 2011 , 132, 405-11	5.6	51
216	Factors that influence telomeric oxidative base damage and repair by DNA glycosylase OGG1. <i>DNA Repair</i> , 2011 , 10, 34-44	4.3	91
215	Bi-directional routing of DNA mismatch repair protein human exonuclease 1 to replication foci and DNA double strand breaks. <i>DNA Repair</i> , 2011 , 10, 73-86	4.3	35
214	WRN helicase regulates the ATR-CHK1-induced S-phase checkpoint pathway in response to topoisomerase-I-DNA covalent complexes. <i>Journal of Cell Science</i> , 2011 , 124, 3967-79	5.3	38
213	Proteome-wide identification of WRN-interacting proteins in untreated and nuclease-treated samples. <i>Journal of Proteome Research</i> , 2011 , 10, 1216-27	5.6	34
212	Non-B DNA-forming sequences and WRN deficiency independently increase the frequency of base substitution in human cells. <i>Journal of Biological Chemistry</i> , 2011 , 286, 10017-26	5.4	27
211	Aprataxin localizes to mitochondria and preserves mitochondrial function. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2011 , 108, 7437-42	11.5	65
210	Metabolism, genomics, and DNA repair in the mouse aging liver. <i>Current Gerontology and Geriatrics Research</i> , 2011 , 2011, 859415	2.9	20
209	Cockayne syndrome, underlying molecular defects and p53. <i>Cell Cycle</i> , 2011 , 10, 3997-8	4.7	43
208	Characterization of RecQL4 biochemical and cellular functions. FASEB Journal, 2011, 25, lb33	0.9	

207	The involvement of human RECQL4 in DNA double-strand break repair. Aging Cell, 2010, 9, 358-71	9.9	72
206	Human RECQL5beta stimulates flap endonuclease 1. <i>Nucleic Acids Research</i> , 2010 , 38, 2904-16	20.1	20
205	DNA repair and the accumulation of oxidatively damaged DNA are affected by fruit intake in mice. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2010 , 65, 1300-11	6.4	7
204	Cockayne syndrome group B protein promotes mitochondrial DNA stability by supporting the DNA repair association with the mitochondrial membrane. <i>FASEB Journal</i> , 2010 , 24, 2334-46	0.9	116
203	Neurons efficiently repair glutamate-induced oxidative DNA damage by a process involving CREB-mediated up-regulation of apurinic endonuclease 1. <i>Journal of Biological Chemistry</i> , 2010 , 285, 28191-9	5.4	76
202	Human RecQL4 helicase plays critical roles in prostate carcinogenesis. <i>Cancer Research</i> , 2010 , 70, 9207-	170.1	47
201	Differential age-related changes in mitochondrial DNA repair activities in mouse brain regions. <i>Neurobiology of Aging</i> , 2010 , 31, 993-1002	5.6	49
200	Mitochondrial base excision repair assays. <i>Methods</i> , 2010 , 51, 416-25	4.6	38
199	Earl R. Stadtman. Mechanisms of Ageing and Development, 2010, 131, 1	5.6	
198	Mitochondrial helicases and mitochondrial genome maintenance. <i>Mechanisms of Ageing and Development</i> , 2010 , 131, 503-10	5.6	8
197	Mitochondrial DNA repair and association with agingan update. <i>Experimental Gerontology</i> , 2010 , 45, 478-88	4.5	120
196	Roles of Werner syndrome protein in protection of genome integrity. DNA Repair, 2010, 9, 331-44	4.3	156
195	Substrate specific stimulation of NEIL1 by WRN but not the other human RecQ helicases. <i>DNA Repair</i> , 2010 , 9, 636-42	4.3	14
194	Conserved helicase domain of human RecQ4 is required for strand annealing-independent DNA unwinding. <i>DNA Repair</i> , 2010 , 9, 796-804	4.3	59
193	The mitochondrial transcription factor A functions in mitochondrial base excision repair. <i>DNA Repair</i> , 2010 , 9, 1080-9	4.3	99
192	Cooperation of DNA-PKcs and WRN helicase in the maintenance of telomeric D-loops. <i>Aging</i> , 2010 , 2, 274-84	5.6	23
191	Base excision repair activities differ in human lung cancer cells and corresponding normal controls. <i>Anticancer Research</i> , 2010 , 30, 4963-71	2.3	10
190	Role of RecQ Helicases in Nuclear DNA Repair and Telomere Maintenance 2010 , 45-62		

(2008-2009)

189	Mechanism of Werner DNA helicase: POT1 and RPA stimulates WRN to unwind beyond gaps in the translocating strand. <i>PLoS ONE</i> , 2009 , 4, e4673	3.7	7
188	SIRT6 stabilizes DNA-dependent protein kinase at chromatin for DNA double-strand break repair. <i>Aging</i> , 2009 , 1, 109-21	5.6	230
187	Telomeric D-loops containing 8-oxo-2Qdeoxyguanosine are preferred substrates for Werner and Bloom syndrome helicases and are bound by POT1. <i>Journal of Biological Chemistry</i> , 2009 , 284, 31074-84	5.4	45
186	Cockayne syndrome group B protein stimulates repair of formamidopyrimidines by NEIL1 DNA glycosylase. <i>Journal of Biological Chemistry</i> , 2009 , 284, 9270-9	5.4	83
185	Direct and indirect roles of RECQL4 in modulating base excision repair capacity. <i>Human Molecular Genetics</i> , 2009 , 18, 3470-83	5.6	70
184	The recombination protein RAD52 cooperates with the excision repair protein OGG1 for the repair of oxidative lesions in mammalian cells. <i>Molecular and Cellular Biology</i> , 2009 , 29, 4441-54	4.8	38
183	A potential impact of DNA repair on ageing and lifespan in the ageing model organism Podospora anserina: decrease in mitochondrial DNA repair activity during ageing. <i>Mechanisms of Ageing and Development</i> , 2009 , 130, 487-96	5.6	17
182	Roles of RECQ helicases in recombination based DNA repair, genomic stability and aging. <i>Biogerontology</i> , 2009 , 10, 235-52	4.5	66
181	DNA base excision repair activities in mouse models of AlzheimerQ disease. <i>Neurobiology of Aging</i> , 2009 , 30, 2080-1	5.6	20
180	Novel DNA mismatch-repair activity involving YB-1 in human mitochondria. <i>DNA Repair</i> , 2009 , 8, 704-19	4.3	149
179	Base excision repair of oxidative DNA damage and association with cancer and aging. <i>Carcinogenesis</i> , 2009 , 30, 2-10	4.6	419
178	Werner syndrome resembles normal aging. <i>Cell Cycle</i> , 2009 , 8, 2323	4.7	4
177	Linking Human RecQ Helicases to DNA Damage Response and Aging 2009 , 331-347		
176	SIRT6 is a histone H3 lysine 9 deacetylase that modulates telomeric chromatin. <i>Nature</i> , 2008 , 452, 492-6	50.4	835
175	Mitochondrial DNA, base excision repair and neurodegeneration. DNA Repair, 2008, 7, 1098-109	4.3	73
174	Mitochondrial DNA damage and repair in neurodegenerative disorders. DNA Repair, 2008, 7, 1110-20	4.3	122
173	WRN protects against topo I but not topo II inhibitors by preventing DNA break formation. <i>DNA Repair</i> , 2008 , 7, 1999-2009	4.3	18
172	The role of Cockayne Syndrome group B (CSB) protein in base excision repair and aging. Mechanisms of Ageing and Development, 2008, 129, 441-8	5.6	111

171	Opinion section on frailty. Mechanisms of Ageing and Development, 2008, 129, 665	5.6	3
170	Rising from the RecQ-age: the role of human RecQ helicases in genome maintenance. <i>Trends in Biochemical Sciences</i> , 2008 , 33, 609-20	10.3	197
169	Werner protein cooperates with the XRCC4-DNA ligase IV complex in end-processing. <i>Biochemistry</i> , 2008 , 47, 7548-56	3.2	52
168	Intrinsic ssDNA annealing activity in the C-terminal region of WRN. <i>Biochemistry</i> , 2008 , 47, 10247-54	3.2	26
167	Biochemical characterization of the WRN-1 RecQ helicase of Caenorhabditis elegans. <i>Biochemistry</i> , 2008 , 47, 7583-93	3.2	24
166	Longevity and resistance to stress correlate with DNA repair capacity in Caenorhabditis elegans. <i>Nucleic Acids Research</i> , 2008 , 36, 1380-9	20.1	50
165	WRN is required for ATM activation and the S-phase checkpoint in response to interstrand cross-link-induced DNA double-strand breaks. <i>Molecular Biology of the Cell</i> , 2008 , 19, 3923-33	3.5	68
164	WRN Exonuclease activity is blocked by specific oxidatively induced base lesions positioned in either DNA strand. <i>Nucleic Acids Research</i> , 2008 , 36, 4975-87	20.1	23
163	Removal of oxidative DNA damage via FEN1-dependent long-patch base excision repair in human cell mitochondria. <i>Molecular and Cellular Biology</i> , 2008 , 28, 4975-87	4.8	174
162	Acetylation regulates WRN catalytic activities and affects base excision DNA repair. <i>PLoS ONE</i> , 2008 , 3, e1918	3.7	29
161	The clinical characteristics of Werner syndrome: molecular and biochemical diagnosis. <i>Human Genetics</i> , 2008 , 124, 369-77	6.3	127
160	Human embryonic stem cells have enhanced repair of multiple forms of DNA damage. <i>Stem Cells</i> , 2008 , 26, 2266-74	5.8	166
159	The mechanics of base excision repair, and its relationship to aging and disease. <i>DNA Repair</i> , 2007 , 6, 544-59	4.3	259
158	Werner syndrome protein: functions in the response to DNA damage and replication stress in S-phase. <i>Experimental Gerontology</i> , 2007 , 42, 871-8	4.5	26
157	The role of WRN in DNA repair is affected by post-translational modifications. <i>Mechanisms of Ageing and Development</i> , 2007 , 128, 50-7	5.6	28
156	WRN exonuclease activity is blocked by DNA termini harboring 3@bstructive groups. <i>Mechanisms of Ageing and Development</i> , 2007 , 128, 259-66	5.6	25
155	Interaction of human SUV3 RNA/DNA helicase with BLM helicase; loss of the SUV3 gene results in mouse embryonic lethality. <i>Mechanisms of Ageing and Development</i> , 2007 , 128, 609-17	5.6	24
154	Cockayne syndrome protein B interacts with and is phosphorylated by c-Abl tyrosine kinase. <i>Nucleic Acids Research</i> , 2007 , 35, 4941-51	20.1	17

(2005-2007)

153	Metal-catalyzed oxidation of the Werner syndrome protein causes loss of catalytic activities and impaired protein-protein interactions. <i>Journal of Biological Chemistry</i> , 2007 , 282, 36403-11	5.4	12
152	Cockayne syndrome B protein stimulates apurinic endonuclease 1 activity and protects against agents that introduce base excision repair intermediates. <i>Nucleic Acids Research</i> , 2007 , 35, 4103-13	20.1	94
151	The human Werner syndrome protein stimulates repair of oxidative DNA base damage by the DNA glycosylase NEIL1. <i>Journal of Biological Chemistry</i> , 2007 , 282, 26591-602	5.4	90
150	Defective DNA base excision repair in brain from individuals with Alzheimer@ disease and amnestic mild cognitive impairment. <i>Nucleic Acids Research</i> , 2007 , 35, 5545-55	20.1	2 10
149	Nutrient-sensitive mitochondrial NAD+ levels dictate cell survival. <i>Cell</i> , 2007 , 130, 1095-107	56.2	754
148	Human premature aging, DNA repair and RecQ helicases. <i>Nucleic Acids Research</i> , 2007 , 35, 7527-44	20.1	159
147	Cockayne syndrome group B protein has novel strand annealing and exchange activities. <i>Nucleic Acids Research</i> , 2006 , 34, 295-304	20.1	37
146	The Werner syndrome protein operates in base excision repair and cooperates with DNA polymerase beta. <i>Nucleic Acids Research</i> , 2006 , 34, 745-54	20.1	205
145	Collaboration of Werner syndrome protein and BRCA1 in cellular responses to DNA interstrand cross-links. <i>Nucleic Acids Research</i> , 2006 , 34, 2751-60	20.1	73
144	Gene-specific and mitochondrial repair of oxidative DNA damage. <i>Methods in Molecular Biology</i> , 2006 , 314, 155-81	1.4	9
144		5.3	9 71
	Werner syndrome protein participates in a complex with RAD51, RAD54, RAD54B and ATR in		
143	Werner syndrome protein participates in a complex with RAD51, RAD54, RAD54B and ATR in response to ICL-induced replication arrest. <i>Journal of Cell Science</i> , 2006 , 119, 5137-46	5-3	71
143	Werner syndrome protein participates in a complex with RAD51, RAD54, RAD54B and ATR in response to ICL-induced replication arrest. <i>Journal of Cell Science</i> , 2006 , 119, 5137-46 Enzymatic mechanism of the WRN helicase/nuclease. <i>Methods in Enzymology</i> , 2006 , 409, 52-85 A role for WRN in telomere-based DNA damage responses. <i>Proceedings of the National Academy of</i>	5-3	71
143 142 141	Werner syndrome protein participates in a complex with RAD51, RAD54, RAD54B and ATR in response to ICL-induced replication arrest. <i>Journal of Cell Science</i> , 2006 , 119, 5137-46 Enzymatic mechanism of the WRN helicase/nuclease. <i>Methods in Enzymology</i> , 2006 , 409, 52-85 A role for WRN in telomere-based DNA damage responses. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2006 , 103, 15073-8 Mitochondrial and nuclear DNA-repair capacity of various brain regions in mouse is altered in an	5·3 1.7 11.5	71 30 57
143 142 141 140	Werner syndrome protein participates in a complex with RAD51, RAD54, RAD54B and ATR in response to ICL-induced replication arrest. <i>Journal of Cell Science</i> , 2006 , 119, 5137-46 Enzymatic mechanism of the WRN helicase/nuclease. <i>Methods in Enzymology</i> , 2006 , 409, 52-85 A role for WRN in telomere-based DNA damage responses. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2006 , 103, 15073-8 Mitochondrial and nuclear DNA-repair capacity of various brain regions in mouse is altered in an age-dependent manner. <i>Neurobiology of Aging</i> , 2006 , 27, 1129-36 Epigenetic inactivation of the premature aging Werner syndrome gene in human cancer.	5.3 1.7 11.5	71 30 57 149
143 142 141 140	Werner syndrome protein participates in a complex with RAD51, RAD54, RAD54B and ATR in response to ICL-induced replication arrest. <i>Journal of Cell Science</i> , 2006 , 119, 5137-46 Enzymatic mechanism of the WRN helicase/nuclease. <i>Methods in Enzymology</i> , 2006 , 409, 52-85 A role for WRN in telomere-based DNA damage responses. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2006 , 103, 15073-8 Mitochondrial and nuclear DNA-repair capacity of various brain regions in mouse is altered in an age-dependent manner. <i>Neurobiology of Aging</i> , 2006 , 27, 1129-36 Epigenetic inactivation of the premature aging Werner syndrome gene in human cancer. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2006 , 103, 8822-7	5.3 1.7 11.5	71 30 57 149 213

135	Gene expression and DNA repair in progeroid syndromes and human aging. <i>Ageing Research Reviews</i> , 2005 , 4, 579-602	12	53
134	The HRDC domain of BLM is required for the dissolution of double Holliday junctions. <i>EMBO Journal</i> , 2005 , 24, 2679-87	13	140
133	Oxidized guanine lesions and hOgg1 activity in lung cancer. <i>Oncogene</i> , 2005 , 24, 4496-508	9.2	67
132	Gene expression responses to DNA damage are altered in human aging and in Werner Syndrome. <i>Oncogene</i> , 2005 , 24, 5026-42	9.2	40
131	The Cockayne syndrome group B protein is a functional dimer. FEBS Journal, 2005, 272, 4306-14	5.7	13
130	Pathways and functions of the Werner syndrome protein. <i>Mechanisms of Ageing and Development</i> , 2005 , 126, 79-86	5.6	75
129	Cellular dynamics and modulation of WRN protein is DNA damage specific. <i>Mechanisms of Ageing and Development</i> , 2005 , 126, 1146-58	5.6	39
128	Deficient DNA repair in the human progeroid disorder, Werner syndrome. <i>Mutation Research</i> - Fundamental and Molecular Mechanisms of Mutagenesis, 2005 , 577, 252-9	3.3	46
127	Modulation of Werner syndrome protein function by a single mutation in the conserved RecQ domain. <i>Journal of Biological Chemistry</i> , 2005 , 280, 39627-36	5.4	32
126	Repair of formamidopyrimidines in DNA involves different glycosylases: role of the OGG1, NTH1, and NEIL1 enzymes. <i>Journal of Biological Chemistry</i> , 2005 , 280, 40544-51	5.4	160
125	POT1 stimulates RecQ helicases WRN and BLM to unwind telomeric DNA substrates. <i>Journal of Biological Chemistry</i> , 2005 , 280, 32069-80	5.4	139
124	Oxidative damage in telomeric DNA disrupts recognition by TRF1 and TRF2. <i>Nucleic Acids Research</i> , 2005 , 33, 1230-9	20.1	195
123	Cooperation of the Cockayne syndrome group B protein and poly(ADP-ribose) polymerase 1 in the response to oxidative stress. <i>Molecular and Cellular Biology</i> , 2005 , 25, 7625-36	4.8	94
122	Linkage between Werner syndrome protein and the Mre11 complex via Nbs1. <i>Journal of Biological Chemistry</i> , 2004 , 279, 21169-76	5.4	93
121	Poly(ADP-ribose) polymerase 1 regulates both the exonuclease and helicase activities of the Werner syndrome protein. <i>Nucleic Acids Research</i> , 2004 , 32, 4003-14	20.1	74
120	Stimulation of flap endonuclease-1 by the Bloom@syndrome protein. <i>Journal of Biological Chemistry</i> , 2004 , 279, 9847-56	5.4	79
119	Junction of RecQ helicase biochemistry and human disease. <i>Journal of Biological Chemistry</i> , 2004 , 279, 18099-102	5.4	78
118	Regulation of WRN helicase activity in human base excision repair. <i>Journal of Biological Chemistry</i> , 2004 , 279, 53465-74	5.4	66

(2003-2004)

117	Werner syndrome cells escape hydrogen peroxide-induced cell proliferation arrest. <i>FASEB Journal</i> , 2004 , 18, 1970-2	0.9	62
116	Mitochondrial and nuclear DNA base excision repair are affected differently by caloric restriction. FASEB Journal, 2004, 18, 595-7	0.9	97
115	p53 functions in the incorporation step in DNA base excision repair in mouse liver mitochondria. Oncogene, 2004 , 23, 6559-68	9.2	84
11/	Werner syndrome protein 1367 variants and disposition towards coronary artery disease in Caucasian patients. <i>Mechanisms of Ageing and Development</i> , 2004 , 125, 491-6	5.6	27
113	Proposed Biological Functions for the Werner Syndrome Protein in DNA Metabolism 2004 , 123-132		
112	Werner syndrome and the function of the Werner protein; what they can teach us about the molecular aging process. <i>Carcinogenesis</i> , 2003 , 24, 791-802	4.6	143
111	Primary fibroblasts of Cockayne syndrome patients are defective in cellular repair of 8-hydroxyguanine and 8-hydroxyadenine resulting from oxidative stress. <i>FASEB Journal</i> , 2003 , 17, 668-	74 ⁻⁹	127
110	The transcriptional response after oxidative stress is defective in Cockayne syndrome group B cells. Oncogene, 2003 , 22, 1135-49	9.2	63
109	Central role for the Werner syndrome protein/poly(ADP-ribose) polymerase 1 complex in the poly(ADP-ribosyl)ation pathway after DNA damage. <i>Molecular and Cellular Biology</i> , 2003 , 23, 8601-13	4.8	127
108	Cockayne syndrome group B cellular and biochemical functions. <i>American Journal of Human Genetics</i> , 2003 , 73, 1217-39	11	127
107	Werner syndrome protein phosphorylation by abl tyrosine kinase regulates its activity and distribution. <i>Molecular and Cellular Biology</i> , 2003 , 23, 6385-95	4.8	63
100	WRN interacts physically and functionally with the recombination mediator protein RAD52. <i>Journal of Biological Chemistry</i> , 2003 , 278, 36476-86	5.4	94
105	Functional consequences of mutations in the conserved SF2 motifs and post-translational phosphorylation of the CSB protein. <i>Nucleic Acids Research</i> , 2003 , 31, 963-73	20.1	39
102	The Werner syndrome protein stimulates DNA polymerase beta strand displacement synthesis via its helicase activity. <i>Journal of Biological Chemistry</i> , 2003 , 278, 22686-95	5.4	96
103	Mammalian 8-oxoguanine DNA glycosylase 1 incises 8-oxoadenine opposite cytosine in nuclei and mitochondria, while a different glycosylase incises 8-oxoadenine opposite guanine in nuclei. <i>Journal of Biological Chemistry</i> , 2003 , 278, 19541-8	5.4	39
102	Werner syndrome protein contains three structure-specific DNA binding domains. <i>Journal of Biological Chemistry</i> , 2003 , 278, 52997-3006	5.4	97
101	Gene expression profiling in Werner syndrome closely resembles that of normal aging. <i>Proceedings</i> of the National Academy of Sciences of the United States of America, 2003 , 100, 12259-64	11.5	128
100	Diverse dealings of the Werner helicase/nuclease. <i>Science of Aging Knowledge Environment: SAGE KE</i> , 2003 , 2003, PE22		2

99 Genomic Instability in Human Premature Aging **2003**, 65-77

98	Werner protein stimulates topoisomerase I DNA relaxation activity. <i>Cancer Research</i> , 2003 , 63, 7136-46	10.1	54
97	DNA-related pathways defective in human premature aging. Scientific World Journal, The, 2002, 2, 1216	-262	3
96	Human premature aging syndromes and genomic instability. <i>Mechanisms of Ageing and Development</i> , 2002 , 123, 987-93	5.6	32
95	Roles of the Werner syndrome protein in pathways required for maintenance of genome stability. <i>Experimental Gerontology</i> , 2002 , 37, 491-506	4.5	79
94	Mitochondrial repair of 8-oxoguanine and changes with aging. Experimental Gerontology, 2002, 37, 1189)- <u>49.6</u>	56
93	Repair of oxidative DNA damage in nuclear and mitochondrial DNA, and some changes with aging in mammalian cells. <i>Free Radical Biology and Medicine</i> , 2002 , 32, 804-12	7.8	308
92	Global genome repair of 8-oxoG in hamster cells requires a functional CSB gene product. <i>Oncogene</i> , 2002 , 21, 3571-8	9.2	43
91	Mitochondrial repair of 8-oxoguanine is deficient in Cockayne syndrome group B. <i>Oncogene</i> , 2002 , 21, 8675-82	9.2	91
90	Pathways defective in the human premature aging disease Werner syndrome. <i>Biogerontology</i> , 2002 , 3, 89-94	4.5	16
89	A nucleolar targeting sequence in the Werner syndrome protein resides within residues 949-1092. Journal of Cell Science, 2002 , 115, 3901-7	5.3	68
88	The cockayne syndrome group B gene product is involved in cellular repair of 8-hydroxyadenine in DNA. <i>Journal of Biological Chemistry</i> , 2002 , 277, 30832-7	5.4	73
87	Differential requirement for the ATPase domain of the Cockayne syndrome group B gene in the processing of UV-induced DNA damage and 8-oxoguanine lesions in human cells. <i>Nucleic Acids Research</i> , 2002 , 30, 782-93	20.1	57
86	Base excision repair capacity in mitochondria and nuclei: tissue-specific variations. <i>FASEB Journal</i> , 2002 , 16, 1895-902	0.9	99
85	The processing of Holliday junctions by BLM and WRN helicases is regulated by p53. <i>Journal of Biological Chemistry</i> , 2002 , 277, 31980-7	5.4	91
84	Characterization of specialized mtDNA glycosylases. <i>Methods in Molecular Biology</i> , 2002 , 197, 227-44	1.4	8
83	The mitochondrial theory of aging: involvement of mitochondrial DNA damage and repair. <i>International Review of Neurobiology</i> , 2002 , 53, 519-34	4.4	26
82	Telomere-binding protein TRF2 binds to and stimulates the Werner and Bloom syndrome helicases. Journal of Biological Chemistry, 2002 , 277, 41110-9	5.4	292

(2001-2002)

81	Ku heterodimer binds to both ends of the Werner protein and functional interaction occurs at the Werner N-terminus. <i>Nucleic Acids Research</i> , 2002 , 30, 3583-91	20.1	79
80	Colocalization, physical, and functional interaction between Werner and Bloom syndrome proteins. <i>Journal of Biological Chemistry</i> , 2002 , 277, 22035-44	5.4	108
79	Werner protein is a target of DNA-dependent protein kinase in vivo and in vitro, and its catalytic activities are regulated by phosphorylation. <i>Journal of Biological Chemistry</i> , 2002 , 277, 18291-302	5.4	129
78	Repair of 8-oxoG is slower in endogenous nuclear genes than in mitochondrial DNA and is without strand bias. <i>DNA Repair</i> , 2002 , 1, 261-73	4.3	67
77	Functional crosstalk between hOgg1 and the helicase domain of Cockayne syndrome group B protein. <i>DNA Repair</i> , 2002 , 1, 913-27	4.3	77
76	Mitochondrial DNA repair of oxidative damage in mammalian cells. <i>Gene</i> , 2002 , 286, 127-34	3.8	161
75	Phenotypic consequences of mutations in the conserved motifs of the putative helicase domain of the human Cockayne syndrome group B gene. <i>Gene</i> , 2002 , 283, 27-40	3.8	39
74	DNA Repair in Mammalian Mitochondria 2002 , 744-758		
73	Third complementarity-determining region of mutated VH immunoglobulin genes contains shorter V, D, J, P, and N components than non-mutated genes. <i>Immunology</i> , 2001 , 103, 179-87	7.8	62
72	DNA repair and mutagenesis in Werner syndrome. <i>Environmental and Molecular Mutagenesis</i> , 2001 , 38, 227-34	3.2	32
71	Impact of age on hypermutation of immunoglobulin variable genes in humans. <i>Journal of Clinical Immunology</i> , 2001 , 21, 102-15	5.7	26
70	Human DNA polymerase beta initiates DNA synthesis during long-patch repair of reduced AP sites in DNA. <i>EMBO Journal</i> , 2001 , 20, 1477-82	13	142
69	Analysis of microsatellite instability and hypermutation of immunoglobulin variable genes in Werner syndrome. <i>Mechanisms of Ageing and Development</i> , 2001 , 122, 1121-33	5.6	1
68	DNA repair and aging in mouse liver: 8-oxodG glycosylase activity increase in mitochondrial but not in nuclear extracts. <i>Free Radical Biology and Medicine</i> , 2001 , 30, 916-23	7.8	97
67	Coordinate action of the helicase and 3Qto 5Qexonuclease of Werner syndrome protein. <i>Journal of Biological Chemistry</i> , 2001 , 276, 44677-87	5.4	87
66	Unwinding of a DNA triple helix by the Werner and Bloom syndrome helicases. <i>Journal of Biological Chemistry</i> , 2001 , 276, 3024-30	5.4	97
65	p53 Modulates the exonuclease activity of Werner syndrome protein. <i>Journal of Biological Chemistry</i> , 2001 , 276, 35093-102	5.4	80
64	The Cockayne Syndrome group B gene product is involved in general genome base excision repair of 8-hydroxyguanine in DNA. <i>Journal of Biological Chemistry</i> , 2001 , 276, 45772-9	5.4	117

63	The Bloom@and Werner@syndrome proteins are DNA structure-specific helicases. <i>Nucleic Acids Research</i> , 2001 , 29, 2843-9	20.1	449
62	Base excision repair in nuclear and mitochondrial DNA. <i>Progress in Molecular Biology and Translational Science</i> , 2001 , 68, 285-97		129
61	Inhibition of the Bloom@and Werner@syndrome helicases by G-quadruplex interacting ligands. <i>Biochemistry</i> , 2001 , 40, 15194-202	3.2	93
60	Interaction of human AP endonuclease 1 with flap endonuclease 1 and proliferating cell nuclear antigen involved in long-patch base excision repair. <i>Biochemistry</i> , 2001 , 40, 12639-44	3.2	125
59	The Werner syndrome. A model for the study of human aging. <i>Annals of the New York Academy of Sciences</i> , 2000 , 908, 167-79	6.5	40
58	Identification of phage antibodies toward the Werner protein by selection on Western blots. <i>Electrophoresis</i> , 2000 , 21, 509-16	3.6	11
57	Role of the ATPase domain of the Cockayne syndrome group B protein in UV induced apoptosis. <i>Oncogene</i> , 2000 , 19, 477-89	9.2	43
56	Werner@syndrome protein (WRN) migrates Holliday junctions and co-localizes with RPA upon replication arrest. <i>EMBO Reports</i> , 2000 , 1, 80-4	6.5	343
55	Mitochondria, oxidative DNA damage, and aging. <i>Journal of the American Aging Association</i> , 2000 , 23, 199-218		15
54	Mitochondrial endogenous oxidative damage has been overestimated. FASEB Journal, 2000, 14, 355-60	0.9	84
53	FEN1 stimulation of DNA polymerase beta mediates an excision step in mammalian long patch base excision repair. <i>Journal of Biological Chemistry</i> , 2000 , 275, 4460-6	5.4	164
52	Accelerated methylation of ribosomal RNA genes during the cellular senescence of Werner syndrome fibroblasts. <i>FASEB Journal</i> , 2000 , 14, 1715-24	0.9	48
51	Replication protein A physically interacts with the Bloom@syndrome protein and stimulates its helicase activity. <i>Journal of Biological Chemistry</i> , 2000 , 275, 23500-8	5.4	239
50	Single nucleotide patch base excision repair is the major pathway for removal of thymine glycol from DNA in human cell extracts. <i>Journal of Biological Chemistry</i> , 2000 , 275, 11809-13	5.4	65
49	Gene-specific repair of gamma-ray-induced DNA strand breaks in colon cancer cells: no coupling to transcription and no removal from the mitochondrial genome. <i>Biochemical and Biophysical Research Communications</i> , 2000 , 269, 433-7	3.4	34
48	Genomic heterogeneity of nucleotide excision repair. <i>Gene</i> , 2000 , 250, 15-30	3.8	118
47	Ku complex interacts with and stimulates the Werner protein. <i>Genes and Development</i> , 2000 , 14, 907-91	2 12.6	202
46	Gene-specific and mitochondrial repair of oxidative DNA damage. <i>Methods in Molecular Biology</i> , 1999 , 113, 257-79	1.4	1

45	The ATPase domain but not the acidic region of Cockayne syndrome group B gene product is essential for DNA repair. <i>Molecular Biology of the Cell</i> , 1999 , 10, 3583-94	3.5	46
44	The Werner syndrome protein is involved in RNA polymerase II transcription. <i>Molecular Biology of the Cell</i> , 1999 , 10, 2655-68	3.5	117
43	DNA repair of pyrimidine dimers and 6-4 photoproducts in the ribosomal DNA. <i>Nucleic Acids Research</i> , 1999 , 27, 2511-20	20.1	22
42	Repair of oxidative DNA base lesions induced by fluorescent light is defective in xeroderma pigmentosum group A cells. <i>Nucleic Acids Research</i> , 1999 , 27, 3153-8	20.1	42
41	Enzymatic and DNA binding properties of purified WRN protein: high affinity binding to single-stranded DNA but not to DNA damage induced by 4NQO. <i>Nucleic Acids Research</i> , 1999 , 27, 3557-0	6 ^{20.1}	108
40	Repair of 8-oxoguanine in DNA is deficient in Cockayne syndrome group B cells. <i>Nucleic Acids Research</i> , 1999 , 27, 1365-8	20.1	107
39	Functional and physical interaction between WRN helicase and human replication protein A. <i>Journal of Biological Chemistry</i> , 1999 , 274, 18341-50	5.4	248
38	Role of DNA polymerase beta in the excision step of long patch mammalian base excision repair. Journal of Biological Chemistry, 1999 , 274, 13741-3	5.4	177
37	Purification and characterization of a mitochondrial thymine glycol endonuclease from rat liver. Journal of Biological Chemistry, 1999 , 274, 7128-36	5.4	29
36	Mitochondrial DNA repair pathways. <i>Journal of Bioenergetics and Biomembranes</i> , 1999 , 31, 391-8	3.7	51
35	Measurement of oxidatively induced base lesions in liver from Wistar rats of different ages. <i>Free Radical Biology and Medicine</i> , 1999 , 27, 456-62	7.8	45
34	Telomeric length in individuals and cell lines with altered p53 status. <i>Radiation Oncology Investigations</i> , 1999 , 7, 13-21		12
33	Inhibition of RNA polymerase II transcription in human cell extracts by cisplatin DNA damage. <i>Biochemistry</i> , 1999 , 38, 6204-12	3.2	72
32	Mitochondrial DNA repair pathways. <i>Mutation Research DNA Repair</i> , 1999 , 434, 137-48		167
31	Oxidative DNA damage processing in nuclear and mitochondrial DNA. <i>Biochimie</i> , 1999 , 81, 155-60	4.6	113
30	Replication protein A stimulates proliferating cell nuclear antigen-dependent repair of abasic sites in DNA by human cell extracts. <i>Biochemistry</i> , 1999 , 38, 11021-5	3.2	46
29	Stereospecific differences in repair by human cell extracts of synthesized oligonucleotides containing trans-opened 7,8,9, 10-tetrahydrobenzo[a]pyrene 7,8-diol 9,10-epoxide N2-dG adduct stereoisomers located within the human K-ras codon 12 sequence. <i>Biochemistry</i> , 1999 , 38, 569-81	3.2	20
28	Gene-Specific and Mitochondrial Repair of Oxidative DNA Damage 1999 , 257-279		

27	Effect of aging on EGF-stimulated replication of specific genes in rat hepatocytes. <i>Journal of Cellular Physiology</i> , 1998 , 176, 32-9	7	6
26	Efficient PCNA complex formation is dependent upon both transcription coupled repair and genome overall repair. <i>Mutation Research DNA Repair</i> , 1998 , 409, 135-46		24
25	Oxidative DNA damage processing and changes with aging. <i>Toxicology Letters</i> , 1998 , 102-103, 47-52	4.4	48
24	Efficient in vitro repair of 7-hydro-8-oxodeoxyguanosine by human cell extracts: involvement of multiple pathways. <i>Nucleic Acids Research</i> , 1998 , 26, 2184-91	20.1	34
23	Homogenous repair of singlet oxygen-induced DNA damage in differentially transcribed regions and strands of human mitochondrial DNA. <i>Nucleic Acids Research</i> , 1998 , 26, 662-8	20.1	74
22	Repair pathways for processing of 8-oxoguanine in DNA by mammalian cell extracts. <i>Journal of Biological Chemistry</i> , 1998 , 273, 33811-6	5.4	181
21	Increased hypermutation at G and C nucleotides in immunoglobulin variable genes from mice deficient in the MSH2 mismatch repair protein. <i>Journal of Experimental Medicine</i> , 1998 , 187, 1745-51	16.6	163
20	DNA Repair and Transcription in Human Premature Aging Disorders. <i>Journal of Investigative Dermatology</i> , 1998 , 3, 11-13	4.3	5
19	Reduced RNA polymerase II transcription in extracts of cockayne syndrome and xeroderma pigmentosum/Cockayne syndrome cells. <i>Nucleic Acids Research</i> , 1997 , 25, 3636-42	20.1	67
18	Repair of oxidative damage to nuclear and mitochondrial DNA in mammalian cells. <i>Journal of Biological Chemistry</i> , 1997 , 272, 25409-12	5.4	356
17	An oxidative damage-specific endonuclease from rat liver mitochondria. <i>Journal of Biological Chemistry</i> , 1997 , 272, 27338-44	5.4	124
16	DNA repair fine structure in Werner@syndrome cell lines. <i>Experimental Cell Research</i> , 1996 , 224, 272-8	4.2	33
15	Gene-specific nuclear and mitochondrial repair of formamidopyrimidine DNA glycosylase-sensitive sites in Chinese hamster ovary cells. <i>Mutation Research DNA Repair</i> , 1996 , 364, 183-92		59
14	Pentoxifylline inhibits gene-specific repair of UV-induced DNA damage in hamster cells. <i>Radiation Oncology Investigations</i> , 1996 , 4, 115-121		3
13	DNA damage, mutation and fine structure DNA repair in aging. <i>Mutation Research - DNAging</i> , 1995 , 338, 25-34		130
12	DNA repair fine structure and its relations to genomic instability. <i>Carcinogenesis</i> , 1995 , 16, 2885-92	4.6	92
11	Staphylococcus aureus meningitis: a review of 28 consecutive community-acquired cases. <i>Scandinavian Journal of Infectious Diseases</i> , 1995 , 27, 569-73		27
10	Methyl methanesulfonate adduct formation and repair in the DHFR gene and in mitochondrial DNA in hamster cells. <i>Carcinogenesis</i> , 1993 , 14, 2105-8	4.6	31

LIST OF PUBLICATIONS

9	Repair of ribosomal RNA genes in hamster cells after UV irradiation, or treatment with cisplatin or alkylating agents. <i>Carcinogenesis</i> , 1993 , 14, 1591-6	4.6	31	
8	Quantitation of 2-amino-3-methylimidazo[4,5-f]quinoline and 2-amino-3,8-dimethylimidazo[4,5-f]quinoxaline DNA adducts in specific sequences using alkali or uvrABC excinuclease. <i>Molecular Carcinogenesis</i> , 1993 , 7, 126-34	5	7	
7	Repair of mitochondrial DNA after various types of DNA damage in Chinese hamster ovary cells. <i>Carcinogenesis</i> , 1992 , 13, 1967-73	4.6	239	
6	Neuropsychological sequelae in 91 cases of pneumococcal meningitis. <i>Developmental Neuropsychology</i> , 1992 , 8, 447-457	1.8	1	
5	Gene specific DNA repair. <i>Carcinogenesis</i> , 1991 , 12, 1983-92	4.6	144	
4	Heterogeneity of DNA repair: implications for human disease and oncology. <i>Pediatric Hematology and Oncology</i> , 1990 , 7, 47-69	1.7	4	
3	DNA repair in the metallothionein gene increases with transcriptional activation. <i>Nucleic Acids Research</i> , 1987 , 15, 10021-30	20.1	62	
2	Werner syndrome: association of premature aging and cancer predisposition423-433			
1	Cockayne syndrome proteins CSA and CSB maintain mitochondrial homeostasis through NAD+signaling	1	1	