
Vilhelm A Bohr

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9490653/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Ageing as a risk factor for neurodegenerative disease. Nature Reviews Neurology, 2019, 15, 565-581.	4.9	1,578
2	Mitophagy inhibits amyloid-β and tau pathology and reverses cognitive deficits in models of Alzheimer's disease. Nature Neuroscience, 2019, 22, 401-412.	7.1	1,008
3	SIRT6 is a histone H3 lysine 9 deacetylase that modulates telomeric chromatin. Nature, 2008, 452, 492-496.	13.7	945
4	Nutrient-Sensitive Mitochondrial NAD+ Levels Dictate Cell Survival. Cell, 2007, 130, 1095-1107.	13.5	855
5	Senolytic therapy alleviates Aβ-associated oligodendrocyte progenitor cell senescence and cognitive deficits in an Alzheimer's disease model. Nature Neuroscience, 2019, 22, 719-728.	7.1	577
6	Defective Mitophagy in XPA via PARP-1 Hyperactivation and NAD+/SIRT1 Reduction. Cell, 2014, 157, 882-896.	13.5	554
7	Mitophagy and Alzheimer's Disease: Cellular and Molecular Mechanisms. Trends in Neurosciences, 2017, 40, 151-166.	4.2	553
8	The Bloom's and Werner's syndrome proteins are DNA structure-specific helicases. Nucleic Acids Research, 2001, 29, 2843-2849.	6.5	518
9	Base excision repair of oxidative DNA damage and association with cancer and aging. Carcinogenesis, 2008, 30, 2-10.	1.3	511
10	Human RecQ Helicases in DNA Repair, Recombination, and Replication. Annual Review of Biochemistry, 2014, 83, 519-552.	5.0	461
11	Repair of Oxidative Damage to Nuclear and Mitochondrial DNA in Mammalian Cells. Journal of Biological Chemistry, 1997, 272, 25409-25412.	1.6	427
12	NAD + Replenishment Improves Lifespan and Healthspan in Ataxia Telangiectasia Models via Mitophagy and DNA Repair. Cell Metabolism, 2016, 24, 566-581.	7.2	420
13	Werner's syndrome protein (WRN) migrates Holliday junctions and coâ€localizes with RPA upon replication arrest. EMBO Reports, 2000, 1, 80-84.	2.0	378
14	A research agenda for aging in China in the 21st century. Ageing Research Reviews, 2015, 24, 197-205.	5.0	374
15	Effects of Sex, Strain, and Energy Intake on Hallmarks of Aging in Mice. Cell Metabolism, 2016, 23, 1093-1112.	7.2	360
16	Repair of oxidative DNA damage in nuclear and mitochondrial DNA, and some changes with aging in mammalian cells1,2 1Guest Editor: Miral Dizdaroglu 2This article is part of a series of reviews on "Oxidative DNA Damage and Repair.―The full list of papers may be found on the homepage of the journal Free Radical Biology and Medicine, 2002, 32, 804-812.	1.3	346
17	Telomere-binding Protein TRF2 Binds to and Stimulates the Werner and Bloom Syndrome Helicases. Journal of Biological Chemistry, 2002, 277, 41110-41119.	1.6	334
18	NAD + in Aging: Molecular Mechanisms and Translational Implications. Trends in Molecular Medicine, 2017, 23, 899-916.	3.5	333

#	Article	IF	CITATIONS
19	NAD ⁺ supplementation normalizes key Alzheimer's features and DNA damage responses in a new AD mouse model with introduced DNA repair deficiency. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E1876-E1885.	3.3	316
20	A High-Fat Diet and NAD + Activate Sirt1 to Rescue Premature Aging in Cockayne Syndrome. Cell Metabolism, 2014, 20, 840-855.	7.2	306
21	Nuclear DNA damage signalling to mitochondria in ageing. Nature Reviews Molecular Cell Biology, 2016, 17, 308-321.	16.1	294
22	Functional and Physical Interaction between WRN Helicase and Human Replication Protein A. Journal of Biological Chemistry, 1999, 274, 18341-18350.	1.6	287
23	Mitochondrial SIRT3 Mediates Adaptive Responses of Neurons to Exercise and Metabolic and Excitatory Challenges. Cell Metabolism, 2016, 23, 128-142.	7.2	286
24	DNA Damage, DNA Repair, Aging, and Neurodegeneration. Cold Spring Harbor Perspectives in Medicine, 2015, 5, a025130.	2.9	285
25	The mechanics of base excision repair, and its relationship to aging and disease. DNA Repair, 2007, 6, 544-559.	1.3	280
26	DNA repair deficiency in neurodegeneration. Progress in Neurobiology, 2011, 94, 166-200.	2.8	280
27	Ku complex interacts with and stimulates the Werner protein. Genes and Development, 2000, 14, 907-912.	2.7	276
28	Replication Protein A Physically Interacts with the Bloom's Syndrome Protein and Stimulates Its Helicase Activity. Journal of Biological Chemistry, 2000, 275, 23500-23508.	1.6	274
29	Mitophagy in neurodegeneration and aging. Neurochemistry International, 2017, 109, 202-209.	1.9	272
30	SIRT6 stabilizes DNA-dependent Protein Kinase at chromatin for DNA double-strand break repair. Aging, 2009, 1, 109-121.	1.4	270
31	Protecting the mitochondrial powerhouse. Trends in Cell Biology, 2015, 25, 158-170.	3.6	260
32	Repair of mitochondrial DNA after various types of DNA damage in Chinese hamster ovary cells. Carcinogenesis, 1992, 13, 1967-1973.	1.3	259
33	Defective DNA base excision repair in brain from individuals with Alzheimer's disease and amnestic mild cognitive impairment. Nucleic Acids Research, 2007, 35, 5545-5555.	6.5	253
34	Nicotinamide Improves Aspects of Healthspan, but Not Lifespan, in Mice. Cell Metabolism, 2018, 27, 667-676.e4.	7.2	242
35	Epigenetic inactivation of the premature aging Werner syndrome gene in human cancer. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 8822-8827.	3.3	240
36	Oxidative damage in telomeric DNA disrupts recognition by TRF1 and TRF2. Nucleic Acids Research, 2005, 33, 1230-1239.	6.5	237

#	Article	IF	CITATIONS
37	The Werner syndrome protein operates in base excision repair and cooperates with DNA polymerase Â. Nucleic Acids Research, 2006, 34, 745-754.	6.5	228
38	Rising from the RecQ-age: the role of human RecQ helicases in genome maintenance. Trends in Biochemical Sciences, 2008, 33, 609-620.	3.7	224
39	Repair Pathways for Processing of 8-Oxoguanine in DNA by Mammalian Cell Extracts. Journal of Biological Chemistry, 1998, 273, 33811-33816.	1.6	220
40	Role of DNA Polymerase β in the Excision Step of Long Patch Mammalian Base Excision Repair. Journal of Biological Chemistry, 1999, 274, 13741-13743.	1.6	202
41	Mitochondrial DNA repair pathways. Mutation Research DNA Repair, 1999, 434, 137-148.	3.8	200
42	Human Embryonic Stem Cells Have Enhanced Repair of Multiple Forms of DNA Damage. Stem Cells, 2008, 26, 2266-2274.	1.4	193
43	Removal of Oxidative DNA Damage via FEN1-Dependent Long-Patch Base Excision Repair in Human Cell Mitochondria. Molecular and Cellular Biology, 2008, 28, 4975-4987.	1.1	192
44	FEN1 Stimulation of DNA Polymerase β Mediates an Excision Step in Mammalian Long Patch Base Excision Repair. Journal of Biological Chemistry, 2000, 275, 4460-4466.	1.6	187
45	Human premature aging, DNA repair and RecQ helicases. Nucleic Acids Research, 2007, 35, 7527-7544.	6.5	186
46	Cockayne syndrome: Clinical features, model systems and pathways. Ageing Research Reviews, 2017, 33, 3-17.	5.0	184
47	Roles of Werner syndrome protein in protection of genome integrity. DNA Repair, 2010, 9, 331-344.	1.3	183
48	Mitochondrial DNA repair of oxidative damage in mammalian cells. Gene, 2002, 286, 127-134.	1.0	179
49	Cockayne syndrome group B protein prevents the accumulation of damaged mitochondria by promoting mitochondrial autophagy. Journal of Experimental Medicine, 2012, 209, 855-869.	4.2	177
50	NAD ⁺ supplementation reduces neuroinflammation and cell senescence in a transgenic mouse model of Alzheimer's disease via cGAS–STING. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	176
51	Repair of Formamidopyrimidines in DNA Involves Different Glycosylases. Journal of Biological Chemistry, 2005, 280, 40544-40551.	1.6	174
52	Novel DNA mismatch-repair activity involving YB-1 in human mitochondria. DNA Repair, 2009, 8, 704-719.	1.3	174
53	Increased Hypermutation at G and C Nucleotides in Immunoglobulin Variable Genes from Mice Deficient in the MSH2 Mismatch Repair Protein. Journal of Experimental Medicine, 1998, 187, 1745-1751.	4.2	170
54	Mitochondrial and nuclear DNA-repair capacity of various brain regions in mouse is altered in an age-dependent manner. Neurobiology of Aging, 2006, 27, 1129-1136.	1.5	168

#	Article	IF	CITATIONS
55	Gene specific DNA repair. Carcinogenesis, 1991, 12, 1983-1992.	1.3	167
56	NAD+ augmentation restores mitophagy and limits accelerated aging in Werner syndrome. Nature Communications, 2019, 10, 5284.	5.8	165
57	Werner syndrome and the function of the Werner protein; what they can teach us about the molecular aging process Carcinogenesis, 2003, 24, 791-802.	1.3	164
58	Human DNA polymerase β initiates DNA synthesis during long-patch repair of reduced AP sites in DNA. EMBO Journal, 2001, 20, 1477-1482.	3.5	159
59	DNA damage, mutation and fine structure DNA repair in aging. Mutation Research - DNAging, 1995, 338, 25-34.	3.3	157
60	POT1 Stimulates RecQ Helicases WRN and BLM to Unwind Telomeric DNA Substrates. Journal of Biological Chemistry, 2005, 280, 32069-32080.	1.6	157
61	The HRDC domain of BLM is required for the dissolution of double Holliday junctions. EMBO Journal, 2005, 24, 2679-2687.	3.5	150
62	The clinical characteristics of Werner syndrome: molecular and biochemical diagnosis. Human Genetics, 2008, 124, 369-377.	1.8	147
63	Mitochondrial DNA damage and repair in neurodegenerative disorders. DNA Repair, 2008, 7, 1110-1120.	1.3	146
64	Base excision repair in nuclear and mitochondrial DNA. Progress in Molecular Biology and Translational Science, 2001, 68, 285-297.	1.9	144
65	Cockayne Syndrome Group B Cellular and Biochemical Functions. American Journal of Human Genetics, 2003, 73, 1217-1239.	2.6	144
66	An Oxidative Damage-specific Endonuclease from Rat Liver Mitochondria. Journal of Biological Chemistry, 1997, 272, 27338-27344.	1.6	143
67	Werner Protein Is a Target of DNA-dependent Protein Kinase in Vivo and in Vitro, and Its Catalytic Activities Are Regulated by Phosphorylation. Journal of Biological Chemistry, 2002, 277, 18291-18302.	1.6	141
68	Central Role for the Werner Syndrome Protein/Poly(ADP-Ribose) Polymerase 1 Complex in the Poly(ADP-Ribosyl)ation Pathway after DNA Damage. Molecular and Cellular Biology, 2003, 23, 8601-8613.	1.1	140
69	Gene expression profiling in Werner syndrome closely resembles that of normal aging. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 12259-12264.	3.3	140
70	Primary fibroblasts of Cockayne syndrome patients are defective in cellular repair of 8â€hydroxyguanine and 8â€hydroxyadenine resulting from oxidative stress. FASEB Journal, 2003, 17, 668-674.	0.2	140
71	The Werner Syndrome Protein Is Involved in RNA Polymerase II Transcription. Molecular Biology of the Cell, 1999, 10, 2655-2668.	0.9	139
72	The Cockayne Syndrome Group B Gene Product Is Involved in General Genome Base Excision Repair of 8-Hydroxyguanine in DNA. Journal of Biological Chemistry, 2001, 276, 45772-45779.	1.6	138

Vilhelm A Bohr

#	Article	IF	CITATIONS
73	Interaction of Human AP Endonuclease 1 with Flap Endonuclease 1 and Proliferating Cell Nuclear Antigen Involved in Long-Patch Base Excision Repair. Biochemistry, 2001, 40, 12639-12644.	1.2	136
74	Mitochondrial DNA repair and association with aging – An update. Experimental Gerontology, 2010, 45, 478-488.	1.2	134
75	Genomic heterogeneity of nucleotide excision repair. Gene, 2000, 250, 15-30.	1.0	129
76	A Small Molecule Inhibitor of the BLM Helicase Modulates Chromosome Stability in Human Cells. Chemistry and Biology, 2013, 20, 55-62.	6.2	128
77	The role of DNA repair in brain related disease pathology. DNA Repair, 2013, 12, 578-587.	1.3	127
78	The role of Cockayne Syndrome group B (CSB) protein in base excision repair and aging. Mechanisms of Ageing and Development, 2008, 129, 441-448.	2.2	126
79	Oxidative DNA damage processing in nuclear and mitochondrial DNA. Biochimie, 1999, 81, 155-160.	1.3	125
80	Cockayne syndrome group B protein promotes mitochondrial DNA stability by supporting the DNA repair association with the mitochondrial membrane. FASEB Journal, 2010, 24, 2334-2346.	0.2	124
81	Repair of 8-oxoguanine in DNA is deficient in Cockayne syndrome group B cells. Nucleic Acids Research, 1999, 27, 1365-1368.	6.5	123
82	BDNF and Exercise Enhance Neuronal DNA Repair by Stimulating CREB-Mediated Production of Apurinic/Apyrimidinic Endonuclease 1. NeuroMolecular Medicine, 2014, 16, 161-174.	1.8	121
83	Signaling by cGAS–STING in Neurodegeneration, Neuroinflammation, and Aging. Trends in Neurosciences, 2021, 44, 83-96.	4.2	121
84	The mitochondrial transcription factor A functions in mitochondrial base excision repair. DNA Repair, 2010, 9, 1080-1089.	1.3	120
85	Colocalization, Physical, and Functional Interaction between Werner and Bloom Syndrome Proteins. Journal of Biological Chemistry, 2002, 277, 22035-22044.	1.6	119
86	Mitochondria in the signaling pathways that control longevity and health span. Ageing Research Reviews, 2019, 54, 100940.	5.0	118
87	Tomatidine enhances lifespan and healthspan in C. elegans through mitophagy induction via the SKN-1/Nrf2 pathway. Scientific Reports, 2017, 7, 46208.	1.6	116
88	Enzymatic and DNA binding properties of purified WRN protein: high affinity binding to single-stranded DNA but not to DNA damage induced by 4NQO. Nucleic Acids Research, 1999, 27, 3557-3566.	6.5	114
89	The Werner Syndrome Protein Stimulates DNA Polymerase β Strand Displacement Synthesis via Its Helicase Activity. Journal of Biological Chemistry, 2003, 278, 22686-22695.	1.6	113
90	DNA repair and aging in mouse liver: 8-oxodG glycosylase activity increase in mitochondrial but not in nuclear extracts. Free Radical Biology and Medicine, 2001, 30, 916-923.	1.3	112

#	Article	IF	CITATIONS
91	DNA polymerase Î ² deficiency leads to neurodegeneration and exacerbates Alzheimer disease phenotypes. Nucleic Acids Research, 2015, 43, 943-959.	6.5	110
92	Werner Syndrome Protein Contains Three Structure-specific DNA Binding Domains. Journal of Biological Chemistry, 2003, 278, 52997-53006.	1.6	109
93	Mitochondrial and nuclear DNA base excision repair are affected differently by caloric restriction. FASEB Journal, 2004, 18, 595-597.	0.2	109
94	Natural polyphenols as sirtuin 6 modulators. Scientific Reports, 2018, 8, 4163.	1.6	109
95	Unwinding of a DNA Triple Helix by the Werner and Bloom Syndrome Helicases. Journal of Biological Chemistry, 2001, 276, 3024-3030.	1.6	108
96	The Processing of Holliday Junctions by BLM and WRN Helicases Is Regulated by p53. Journal of Biological Chemistry, 2002, 277, 31980-31987.	1.6	107
97	Base excision repair capacity in mitochondria and nuclei: tissueâ€specific variations. FASEB Journal, 2002, 16, 1895-1902.	0.2	105
98	WRN Interacts Physically and Functionally with the Recombination Mediator Protein RAD52. Journal of Biological Chemistry, 2003, 278, 36476-36486.	1.6	105
99	Cooperation of the Cockayne Syndrome Group B Protein and Poly(ADP-Ribose) Polymerase 1 in the Response to Oxidative Stress. Molecular and Cellular Biology, 2005, 25, 7625-7636.	1.1	104
100	Cockayne syndrome B protein stimulates apurinic endonuclease 1 activity and protects against agents that introduce base excision repair intermediates. Nucleic Acids Research, 2007, 35, 4103-4113.	6.5	104
101	JNK Phosphorylates SIRT6 to Stimulate DNA Double-Strand Break Repair in Response to Oxidative Stress by Recruiting PARP1 to DNA Breaks. Cell Reports, 2016, 16, 2641-2650.	2.9	104
102	Factors that influence telomeric oxidative base damage and repair by DNA glycosylase OGG1. DNA Repair, 2011, 10, 34-44.	1.3	103
103	Linkage between Werner Syndrome Protein and the Mre11 Complex via Nbs1. Journal of Biological Chemistry, 2004, 279, 21169-21176.	1.6	102
104	Evidence that OGG1 Glycosylase Protects Neurons against Oxidative DNA Damage and Cell Death under Ischemic Conditions. Journal of Cerebral Blood Flow and Metabolism, 2011, 31, 680-692.	2.4	101
105	Inhibition of the Bloom's and Werner's Syndrome Helicases by G-Quadruplex Interacting Ligands. Biochemistry, 2001, 40, 15194-15202.	1.2	100
106	The Human Werner Syndrome Protein Stimulates Repair of Oxidative DNA Base Damage by the DNA Glycosylase NEIL1. Journal of Biological Chemistry, 2007, 282, 26591-26602.	1.6	100
107	Mitochondrial repair of 8-oxoguanine is deficient in Cockayne syndrome group B. Oncogene, 2002, 21, 8675-8682.	2.6	99
108	RECQL4, the Protein Mutated in Rothmund-Thomson Syndrome, Functions in Telomere Maintenance. Journal of Biological Chemistry, 2012, 287, 196-209.	1.6	99

#	Article	IF	CITATIONS
109	RECQL4 localizes to mitochondria and preserves mitochondrial DNA integrity. Aging Cell, 2012, 11, 456-466.	3.0	97
110	Coordinate Action of the Helicase and 3′ to 5′ Exonuclease of Werner Syndrome Protein. Journal of Biological Chemistry, 2001, 276, 44677-44687.	1.6	96
111	DNA repair fine structure and its relations to genomic instability. Carcinogenesis, 1995, 16, 2885-2892.	1.3	95
112	p53 Modulates the Exonuclease Activity of Werner Syndrome Protein. Journal of Biological Chemistry, 2001, 276, 35093-35102.	1.6	95
113	Mitochondrial endogenous oxidative damage has been overestimated. FASEB Journal, 2000, 14, 355-360.	0.2	94
114	Cockayne Syndrome Group B Protein Stimulates Repair of Formamidopyrimidines by NEIL1 DNA Glycosylase. Journal of Biological Chemistry, 2009, 284, 9270-9279.	1.6	92
115	Poly(ADP-ribose) polymerase 1 regulates both the exonuclease and helicase activities of the Werner syndrome protein. Nucleic Acids Research, 2004, 32, 4003-4014.	6.5	89
116	p53 functions in the incorporation step in DNA base excision repair in mouse liver mitochondria. Oncogene, 2004, 23, 6559-6568.	2.6	89
117	Mitochondrial DNA, base excision repair and neurodegeneration. DNA Repair, 2008, 7, 1098-1109.	1.3	89
118	The Cockayne Syndrome Group B Gene Product Is Involved in Cellular Repair of 8-Hydroxyadenine in DNA. Journal of Biological Chemistry, 2002, 277, 30832-30837.	1.6	88
119	Ku heterodimer binds to both ends of the Werner protein and functional interaction occurs at the Werner N-terminus. Nucleic Acids Research, 2002, 30, 3583-3591.	6.5	86
120	Functional crosstalk between hOgg1 and the helicase domain of Cockayne syndrome group B protein. DNA Repair, 2002, 1, 913-927.	1.3	85
121	Stimulation of Flap Endonuclease-1 by the Bloom's Syndrome Protein. Journal of Biological Chemistry, 2004, 279, 9847-9856.	1.6	85
122	Junction of RecQ Helicase Biochemistry and Human Disease. Journal of Biological Chemistry, 2004, 279, 18099-18102.	1.6	85
123	Mitochondria-targeted Ogg1 and Aconitase-2 Prevent Oxidant-induced Mitochondrial DNA Damage in Alveolar Epithelial Cells. Journal of Biological Chemistry, 2014, 289, 6165-6176.	1.6	85
124	Single-molecule imaging reveals a common mechanism shared by G-quadruplex–resolving helicases. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 8448-8453.	3.3	85
125	Roles of the Werner syndrome protein in pathways required for maintenance of genome stability. Experimental Gerontology, 2002, 37, 491-506.	1.2	84
126	Neurons Efficiently Repair Glutamate-induced Oxidative DNA Damage by a Process Involving CREB-mediated Up-regulation of Apurinic Endonuclease 1. Journal of Biological Chemistry, 2010, 285, 28191-28199.	1.6	84

#	Article	IF	CITATIONS
127	Genome instability in Alzheimer disease. Mechanisms of Ageing and Development, 2017, 161, 83-94.	2.2	83
128	Collaboration of Werner syndrome protein and BRCA1 in cellular responses to DNA interstrand cross-links. Nucleic Acids Research, 2006, 34, 2751-2760.	6.5	82
129	Pathways and functions of the Werner syndrome protein. Mechanisms of Ageing and Development, 2005, 126, 79-86.	2.2	81
130	WRN regulates pathway choice between classical and alternative non-homologous end joining. Nature Communications, 2016, 7, 13785.	5.8	81
131	RECQL4 Promotes DNA End Resection in Repair of DNA Double-Strand Breaks. Cell Reports, 2016, 16, 161-173.	2.9	81
132	Homogenous repair of singlet oxygen-induced DNA damage in differentially transcribed regions and strands of human mitochondrial DNA. Nucleic Acids Research, 1998, 26, 662-1997.	6.5	80
133	Loss of ARID1A in Tumor Cells Renders Selective Vulnerability to Combined Ionizing Radiation and PARP Inhibitor Therapy. Clinical Cancer Research, 2019, 25, 5584-5594.	3.2	80
134	Repair of 8-oxoG is slower in endogenous nuclear genes than in mitochondrial DNA and is without strand bias. DNA Repair, 2002, 1, 261-273.	1.3	78
135	Heterochromatin: an epigenetic point of view in aging. Experimental and Molecular Medicine, 2020, 52, 1466-1474.	3.2	78
136	Werner syndrome protein participates in a complex with RAD51, RAD54, RAD54B and ATR in response to ICL-induced replication arrest. Journal of Cell Science, 2006, 119, 5137-5146.	1.2	77
137	Inhibition of RNA Polymerase II Transcription in Human Cell Extracts by Cisplatin DNA Damage. Biochemistry, 1999, 38, 6204-6212.	1.2	76
138	Oxidized guanine lesions and hOgg1 activity in lung cancer. Oncogene, 2005, 24, 4496-4508.	2.6	76
139	The involvement of human RECQL4 in DNA doubleâ€strand break repair. Aging Cell, 2010, 9, 358-371.	3.0	76
140	Aprataxin localizes to mitochondria and preserves mitochondrial function. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 7437-7442.	3.3	76
141	Regulation of WRN Helicase Activity in Human Base Excision Repair. Journal of Biological Chemistry, 2004, 279, 53465-53474.	1.6	75
142	Direct and indirect roles of RECQL4 in modulating base excision repair capacity. Human Molecular Genetics, 2009, 18, 3470-3483.	1.4	75
143	Roles of RECQ helicases in recombination based DNA repair, genomic stability and aging. Biogerontology, 2009, 10, 235-252.	2.0	75
144	Reduced RNA polymerase II transcription in extracts of Cockayne syndrome and xeroderma pigmentosum/Cockayne syndrome cells. Nucleic Acids Research, 1997, 25, 3636-3642.	6.5	74

#	Article	IF	CITATIONS
145	A nucleolar targeting sequence in the Werner syndrome protein resides within residues 949-1092. Journal of Cell Science, 2002, 115, 3901-3907.	1.2	74
146	Gene-specific nuclear and mitochondrial repair of formamidopyrimidine DNA glycosylase-sensitive sites in Chinese hamster ovary cells. Mutation Research DNA Repair, 1996, 364, 183-192.	3.8	72
147	WRN Is Required for ATM Activation and the S-Phase Checkpoint in Response to Interstrand Cross-Link–Induced DNA Double-Strand Breaks. Molecular Biology of the Cell, 2008, 19, 3923-3933.	0.9	72
148	Cockayne syndrome group A and B proteins converge on transcription-linked resolution of non-B DNA. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 12502-12507.	3.3	72
149	Third complementarity-determining region of mutated VH immunoglobulin genes contains shorter V, D, J, P, and N components than non-mutated genes. Immunology, 2001, 103, 179-187.	2.0	71
150	Cell cycle-dependent phosphorylation regulates RECQL4 pathway choice and ubiquitination in DNA double-strand break repair. Nature Communications, 2017, 8, 2039.	5.8	71
151	Single Nucleotide Patch Base Excision Repair Is the Major Pathway for Removal of Thymine Glycol from DNA in Human Cell Extracts. Journal of Biological Chemistry, 2000, 275, 11809-11813.	1.6	70
152	DNA repair in the metallothionein gene increases with transcriptional activation. Nucleic Acids Research, 1987, 15, 10021-10030.	6.5	67
153	The transcriptional response after oxidative stress is defective in Cockayne syndrome group B cells. Oncogene, 2003, 22, 1135-1149.	2.6	66
154	Werner syndrome cells escape hydrogen peroxideâ€induced cell proliferation arrest. FASEB Journal, 2004, 18, 1970-1972.	0.2	66
155	RecQ helicases in DNA double strand break repair and telomere maintenance. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 2012, 736, 15-24.	0.4	66
156	Mitochondrial deficiency in Cockayne syndrome. Mechanisms of Ageing and Development, 2013, 134, 275-283.	2.2	66
157	Werner Syndrome Protein Phosphorylation by Abl Tyrosine Kinase Regulates Its Activity and Distribution. Molecular and Cellular Biology, 2003, 23, 6385-6395.	1.1	65
158	The excitatory neurotransmitter glutamate stimulates DNA repair to increase neuronal resiliency. Mechanisms of Ageing and Development, 2011, 132, 405-411.	2.2	65
159	Endonuclease VIII-like 1 (NEIL1) promotes short-term spatial memory retention and protects from ischemic stroke-induced brain dysfunction and death in mice. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 14948-14953.	3.3	64
160	RECQL4 in genomic instability and aging. Trends in Genetics, 2012, 28, 624-631.	2.9	64
161	Differential requirement for the ATPase domain of the Cockayne syndrome group B gene in the processing of UV-induced DNA damage and 8-oxoguanine lesions in human cells. Nucleic Acids Research, 2002, 30, 782-793.	6.5	63
162	Mitochondrial repair of 8-oxoguanine and changes with aging. Experimental Gerontology, 2002, 37, 1189-1196.	1.2	63

Vilhelm A Bohr

#	Article	IF	CITATIONS
163	Mitochondrial DNA repair pathways. , 1999, 31, 391-398.		62
164	A role for WRN in telomere-based DNA damage responses. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 15073-15078.	3.3	62
165	Longevity and resistance to stress correlate with DNA repair capacity in Caenorhabditis elegans. Nucleic Acids Research, 2008, 36, 1380-1389.	6.5	62
166	Conserved helicase domain of human RecQ4 is required for strand annealing-independent DNA unwinding. DNA Repair, 2010, 9, 796-804.	1.3	61
167	Spatial Transcriptomics Reveals Genes Associated with Dysregulated Mitochondrial Functions and Stress Signaling in Alzheimer Disease. IScience, 2020, 23, 101556.	1.9	61
168	Gene expression and DNA repair in progeroid syndromes and human aging. Ageing Research Reviews, 2005, 4, 579-602.	5.0	60
169	Werner Protein Cooperates with the XRCC4-DNA Ligase IV Complex in End-Processing. Biochemistry, 2008, 47, 7548-7556.	1.2	59
170	The impact of base excision DNA repair in age-related neurodegenerative diseases. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 2015, 776, 31-39.	0.4	59
171	Base excision DNA repair levels in mitochondrial lysates ofÂAlzheimer's disease. Neurobiology of Aging, 2014, 35, 1293-1300.	1.5	58
172	Recent Advances in Understanding Werner Syndrome. F1000Research, 2017, 6, 1779.	0.8	58
173	DNA damage and mitochondria in cancer and aging. Carcinogenesis, 2020, 41, 1625-1634.	1.3	58
174	NAD ⁺ supplementation prevents STINGâ€induced senescence in ataxia telangiectasia by improving mitophagy. Aging Cell, 2021, 20, e13329.	3.0	58
175	Werner protein stimulates topoisomerase I DNA relaxation activity. Cancer Research, 2003, 63, 7136-46.	0.4	58
176	Oxidative DNA damage processing and changes with aging. Toxicology Letters, 1998, 102-103, 47-52.	0.4	57
177	Repair of persistent strand breaks in the mitochondrial genome. Mechanisms of Ageing and Development, 2012, 133, 169-175.	2.2	57
178	Replication Protein A Stimulates Proliferating Cell Nuclear Antigen-Dependent Repair of Abasic Sites in DNA by Human Cell Extractsâ€. Biochemistry, 1999, 38, 11021-11025.	1.2	56
179	Human Cockayne syndrome B protein reciprocally communicates with mitochondrial proteins and promotes transcriptional elongation. Nucleic Acids Research, 2012, 40, 8392-8405.	6.5	56
180	Olfactory dysfunction in aging and neurodegenerative diseases. Ageing Research Reviews, 2021, 70, 101416.	5.0	56

#	Article	IF	CITATIONS
181	Accelerated methylation of ribosomal RNA genes during the cellular senescence of Werner syndrome fibroblasts. FASEB Journal, 2000, 14, 1715-1724.	0.2	55
182	Deficient DNA repair in the human progeroid disorder, Werner syndrome. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 2005, 577, 252-259.	0.4	55
183	Human RecQL4 Helicase Plays Critical Roles in Prostate Carcinogenesis. Cancer Research, 2010, 70, 9207-9217.	0.4	55
184	SLX4 contributes to telomere preservation and regulated processing of telomeric joint molecule intermediates. Nucleic Acids Research, 2015, 43, 5912-5923.	6.5	55
185	A novel diagnostic tool reveals mitochondrial pathology in human diseases and aging. Aging, 2013, 5, 192-208.	1.4	53
186	Measurement of oxidatively induced base lesions in liver from Wistar rats of different ages. Free Radical Biology and Medicine, 1999, 27, 456-462.	1.3	52
187	Differential age-related changes in mitochondrial DNA repair activities in mouse brain regions. Neurobiology of Aging, 2010, 31, 993-1002.	1.5	52
188	The human RecQ helicases BLM and RECQL4 cooperate to preserve genome stability. Nucleic Acids Research, 2012, 40, 6632-6648.	6.5	52
189	Modulation of DNA base excision repair during neuronal differentiation. Neurobiology of Aging, 2013, 34, 1717-1727.	1.5	52
190	RECQ helicase RECQL4 participates in non-homologous end joining and interacts with the Ku complex. Carcinogenesis, 2014, 35, 2415-2424.	1.3	52
191	Toward understanding genomic instability, mitochondrial dysfunction and aging. FEBS Journal, 2019, 286, 1058-1073.	2.2	52
192	DNA damage, DNA repair, ageing and age-related disease. Mechanisms of Ageing and Development, 2008, 129, 349-352.	2.2	51
193	Telomeric D-loops Containing 8-Oxo-2′-deoxyguanosine Are Preferred Substrates for Werner and Bloom Syndrome Helicases and Are Bound by POT1. Journal of Biological Chemistry, 2009, 284, 31074-31084.	1.6	51
194	Mammalian 8-Oxoguanine DNA Glycosylase 1 Incises 8-Oxoadenine Opposite Cytosine in Nuclei and Mitochondria, while a Different Glycosylase Incises 8-Oxoadenine Opposite Guanine in Nuclei. Journal of Biological Chemistry, 2003, 278, 19541-19548.	1.6	50
195	Gene expression responses to DNA damage are altered in human aging and in Werner Syndrome. Oncogene, 2005, 24, 5026-5042.	2.6	50
196	The Werner Syndrome: A Model for the Study of Human Aging. Annals of the New York Academy of Sciences, 2000, 908, 167-179.	1.8	50
197	Base excision repair in the mammalian brain: Implication for age related neurodegeneration. Mechanisms of Ageing and Development, 2013, 134, 440-448.	2.2	50
198	The ATPase Domain but Not the Acidic Region of Cockayne Syndrome Group B Gene Product Is Essential for DNA Repair. Molecular Biology of the Cell, 1999, 10, 3583-3594.	0.9	49

#	Article	IF	CITATIONS
199	CSB interacts with SNM1A and promotes DNA interstrand crosslink processing. Nucleic Acids Research, 2015, 43, 247-258.	6.5	48
200	NAD ⁺ Metabolism in Aging and Cancer. Annual Review of Cancer Biology, 2019, 3, 105-130.	2.3	48
201	Sporadic Alzheimer disease fibroblasts display an oxidative stress phenotype. Free Radical Biology and Medicine, 2012, 53, 1371-1380.	1.3	47
202	Asbestos-Induced Pulmonary Fibrosis Is Augmented in 8-Oxoguanine DNA Glycosylase Knockout Mice. American Journal of Respiratory Cell and Molecular Biology, 2015, 52, 25-36.	1.4	47
203	Di-(2-ethylhexyl) phthalate inhibits DNA replication leading to hyperPARylation, SIRT1 attenuation and mitochondrial dysfunction in the testis. Scientific Reports, 2014, 4, 6434.	1.6	47
204	Repair of oxidative DNA base lesions induced by fluorescent light is defective in xeroderma pigmentosum group A cells. Nucleic Acids Research, 1999, 27, 3153-3158.	6.5	46
205	RECQ1 is required for cellular resistance to replication stress and catalyzes strand exchange on stalled replication fork structures. Cell Cycle, 2012, 11, 4252-4265.	1.3	46
206	Role of the ATPase domain of the Cockayne syndrome group B protein in UV induced apoptosis. Oncogene, 2000, 19, 477-489.	2.6	45
207	WRN helicase regulates the ATR–CHK1-induced S-phase checkpoint pathway in response to to topoisomerase-l–DNA covalent complexes. Journal of Cell Science, 2011, 124, 3967-3979.	1.2	45
208	Short-term NAD+ supplementation prevents hearing loss in mouse models of Cockayne syndrome. Npj Aging and Mechanisms of Disease, 2020, 6, 1.	4.5	45
209	Biological sex and DNA repair deficiency drive Alzheimer's disease via systemic metabolic remodeling and brain mitochondrial dysfunction. Acta Neuropathologica, 2020, 140, 25-47.	3.9	45
210	Global genome repair of 8-oxoG in hamster cells requires a functional CSB gene product. Oncogene, 2002, 21, 3571-3578.	2.6	44
211	Cockayne syndrome, underlying molecular defects and p53. Cell Cycle, 2011, 10, 3999-3998.	1.3	44
212	Regulatory interplay of Cockayne syndrome B ATPase and stress-response gene <i>ATF3</i> following genotoxic stress. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, E2261-70.	3.3	44
213	Functional consequences of mutations in the conserved SF2 motifs and post-translational phosphorylation of the CSB protein. Nucleic Acids Research, 2003, 31, 963-973.	6.5	43
214	RECQL5 cooperates with Topoisomerase II alpha in DNA decatenation and cell cycle progression. Nucleic Acids Research, 2012, 40, 1621-1635.	6.5	43
215	<scp>RECQL4</scp> helicase has oncogenic potential in sporadic breast cancers. Journal of Pathology, 2016, 238, 495-501.	2.1	43
216	Phenotypic consequences of mutations in the conserved motifs of the putative helicase domain of the human Cockayne Syndrome Group B gene. Gene, 2002, 283, 27-40.	1.0	42

#	Article	IF	CITATIONS
217	Cellular dynamics and modulation of WRN protein is DNA damage specific. Mechanisms of Ageing and Development, 2005, 126, 1146-1158.	2.2	42
218	The Recombination Protein RAD52 Cooperates with the Excision Repair Protein OGG1 for the Repair of Oxidative Lesions in Mammalian Cells. Molecular and Cellular Biology, 2009, 29, 4441-4454.	1.1	42
219	Mitochondrial base excision repair assays. Methods, 2010, 51, 416-425.	1.9	42
220	Bi-directional routing of DNA mismatch repair protein human exonuclease 1 to replication foci and DNA double strand breaks. DNA Repair, 2011, 10, 73-86.	1.3	42
221	Reâ€equilibration of imbalanced NAD metabolism ameliorates the impact of telomere dysfunction. EMBO Journal, 2020, 39, e103420.	3.5	42
222	Site-Specific Noncovalent Interaction of the Biopolymer Poly(ADP-ribose) with the Werner Syndrome Protein Regulates Protein Functions. ACS Chemical Biology, 2013, 8, 179-188.	1.6	41
223	Neurogenesis in aging and age-related neurodegenerative diseases. Ageing Research Reviews, 2022, 78, 101636.	5.0	41
224	NAD ⁺ in DNA repair and mitochondrial maintenance. Cell Cycle, 2017, 16, 491-492.	1.3	40
225	Sarcopenia, Aging and Prospective Interventional Strategies. Current Medicinal Chemistry, 2019, 25, 5588-5596.	1.2	40
226	Mitophagy and DNA damage signaling in human aging. Mechanisms of Ageing and Development, 2020, 186, 111207.	2.2	40
227	Cockayne syndrome group B protein has novel strand annealing and exchange activities. Nucleic Acids Research, 2006, 34, 295-304.	6.5	39
228	Proteome-wide Identification of WRN-Interacting Proteins in Untreated and Nuclease-Treated Samples. Journal of Proteome Research, 2011, 10, 1216-1227.	1.8	39
229	Contribution of defective mitophagy to the neurodegeneration in DNA repair-deficient disorders. Autophagy, 2014, 10, 1468-1469.	4.3	39
230	Cockayne Syndrome group B protein stimulates NEIL2 DNA glycosylase activity. Mechanisms of Ageing and Development, 2014, 135, 1-14.	2.2	39
231	Human RECQL1 participates in telomere maintenance. Nucleic Acids Research, 2014, 42, 5671-5688.	6.5	38
232	Human exonuclease 1 (EXO1) activity characterization and its function on flap structures. Bioscience Reports, 2015, 35, .	1.1	38
233	DNA polymerase Î ² decrement triggers death of olfactory bulb cells and impairs olfaction in a mouse model of Alzheimer's disease. Aging Cell, 2017, 16, 162-172.	3.0	38
234	Defective mitochondrial respiration, altered dNTP pools and reduced AP endonuclease 1 activity in peripheral blood mononuclear cells of Alzheimer's disease patients. Aging, 2015, 7, 793-810.	1.4	38

#	Article	IF	CITATIONS
235	Camptothecin targets WRN protein: mechanism and relevance in clinical breast cancer. Oncotarget, 2016, 7, 13269-13284.	0.8	38
236	Efficient in vitro repair of 7-hydro-8-oxodeoxyguanosine by human cell extracts: involvement of multiple pathways. Nucleic Acids Research, 1998, 26, 2184-2191.	6.5	37
237	Gene-Specific Repair of Î ³ -Ray-Induced DNA Strand Breaks in Colon Cancer Cells: No Coupling to Transcription and No Removal from the Mitochondrial Genome. Biochemical and Biophysical Research Communications, 2000, 269, 433-437.	1.0	37
238	DNA repair and mutagenesis in Werner syndrome. Environmental and Molecular Mutagenesis, 2001, 38, 227-234.	0.9	37
239	Overexpression of DNA ligase III in mitochondria protects cells against oxidative stress and improves mitochondrial DNA base excision repair. DNA Repair, 2014, 16, 44-53.	1.3	37
240	The Identification of a SIRT6 Activator from Brown Algae Fucus distichus. Marine Drugs, 2017, 15, 190.	2.2	37
241	The NAD+-mitophagy axis in healthy longevity and in artificial intelligence-based clinical applications. Mechanisms of Ageing and Development, 2020, 185, 111194.	2.2	36
242	Selfâ€assembly of multiâ€component mitochondrial nucleoids via phase separation. EMBO Journal, 2021, 40, e107165.	3.5	36
243	DNA Repair Fine Structure in Werner's Syndrome Cell Lines. Experimental Cell Research, 1996, 224, 272-278.	1.2	35
244	The mitochondrial theory of aging: Involvement of mitochondrial DNA damage and repair. International Review of Neurobiology, 2002, 53, 519-534.	0.9	35
245	Human premature aging syndromes and genomic instability. Mechanisms of Ageing and Development, 2002, 123, 987-993.	2.2	35
246	Lamin A/C promotes DNA base excision repair. Nucleic Acids Research, 2019, 47, 11709-11728.	6.5	35
247	Assessment of NAD+metabolism in human cell cultures, erythrocytes, cerebrospinal fluid and primate skeletal muscle. Analytical Biochemistry, 2019, 572, 1-8.	1.1	35
248	Hippocampal tau oligomerization early in tau pathology coincides with a transient alteration of mitochondrial homeostasis and DNA repair in a mouse model of tauopathy. Acta Neuropathologica Communications, 2020, 8, 25.	2.4	35
249	Staphylococcus aureus Meningitis: A Review of 28 Consecutive Community-Acquired Cases. Scandinavian Journal of Infectious Diseases, 1995, 27, 569-573.	1.5	34
250	Modulation of Werner Syndrome Protein Function by a Single Mutation in the Conserved RecQ Domain. Journal of Biological Chemistry, 2005, 280, 39627-39636.	1.6	34
251	Cockayne syndrome group A and B proteins function in rRNA transcription through nucleolin regulation. Nucleic Acids Research, 2020, 48, 2473-2485.	6.5	34
252	Methyl methanesulfonate adduct formation and repair in the DHFR gene and in mitochondrial DNA in hamster cells. Carcinogenesis, 1993, 14, 2105-2108.	1.3	33

#	Article	IF	CITATIONS
253	Repair of ribosomal RNA genes in hamster cells after UV irradiation, or treatment with cisplatin or alkylating agents. Carcinogenesis, 1993, 14, 1591-1596.	1.3	33
254	Purification and Characterization of a Mitochondrial Thymine Glycol Endonuclease from Rat Liver. Journal of Biological Chemistry, 1999, 274, 7128-7136.	1.6	33
255	NAD ⁺ : The convergence of DNA repair and mitophagy. Autophagy, 2017, 13, 442-443.	4.3	33
256	Enzymatic Mechanism of the WRN Helicase/Nuclease. Methods in Enzymology, 2006, 409, 52-85.	0.4	32
257	Acetylation Regulates WRN Catalytic Activities and Affects Base Excision DNA Repair. PLoS ONE, 2008, 3, e1918.	1.1	32
258	Xeroderma pigmentosum and other diseases of human premature aging and DNA repair: Molecules to patients. Mechanisms of Ageing and Development, 2011, 132, 340-347.	2.2	32
259	Mitochondrial base excision repair in mouse synaptosomes during normal aging and in a model of Alzheimer's disease. Neurobiology of Aging, 2012, 33, 694-707.	1.5	32
260	Non-B DNA-forming Sequences and WRN Deficiency Independently Increase the Frequency of Base Substitution in Human Cells. Journal of Biological Chemistry, 2011, 286, 10017-10026.	1.6	31
261	Human longevity and variation in DNA damage response and repair: study of the contribution of sub-processes using competitive gene-set analysis. European Journal of Human Genetics, 2014, 22, 1131-1136.	1.4	31
262	Clinicopathological and prognostic significance of RECQL5 helicase expression in breast cancers. Carcinogenesis, 2016, 37, 63-71.	1.3	31
263	DNA damage invokes mitophagy through a pathway involving Spata18. Nucleic Acids Research, 2020, 48, 6611-6623.	6.5	31
264	Human RECQL5: Guarding the crossroads of DNA replication and transcription and providing backup capability. Critical Reviews in Biochemistry and Molecular Biology, 2013, 48, 289-299.	2.3	30
265	The role of DNA base excision repair in brain homeostasis and disease. DNA Repair, 2015, 32, 172-179.	1.3	30
266	A ketogenic diet accelerates neurodegeneration in mice with induced mitochondrial DNA toxicity in the forebrain. Neurobiology of Aging, 2016, 48, 34-47.	1.5	30
267	Current and emerging roles of Cockayne syndrome group B (CSB) protein. Nucleic Acids Research, 2021, 49, 2418-2434.	6.5	30
268	The role of WRN in DNA repair is affected by post-translational modifications. Mechanisms of Ageing and Development, 2007, 128, 50-57.	2.2	29
269	WRN exonuclease activity is blocked by DNA termini harboring 3′ obstructive groups. Mechanisms of Ageing and Development, 2007, 128, 259-266.	2.2	29
270	Interaction of human SUV3 RNA/DNA helicase with BLM helicase; loss of the SUV3 gene results in mouse embryonic lethality. Mechanisms of Ageing and Development, 2007, 128, 609-617.	2.2	29

#	Article	IF	CITATIONS
271	Recruitment and retention dynamics of RECQL5 at DNA double strand break sites. DNA Repair, 2012, 11, 624-635.	1.3	29
272	Multiple interaction partners for Cockayne syndrome proteins: Implications for genome and transcriptome maintenance. Mechanisms of Ageing and Development, 2013, 134, 212-224.	2.2	29
273	Impact of age on hypermutation of immunoglobulin variable genes in humans. Journal of Clinical Immunology, 2001, 21, 102-115.	2.0	28
274	Werner syndrome protein: Functions in the response to DNA damage and replication stress in S-phase. Experimental Gerontology, 2007, 42, 871-878.	1.2	28
275	Intrinsic ssDNA Annealing Activity in the C-Terminal Region of WRN. Biochemistry, 2008, 47, 10247-10254.	1.2	28
276	Human RECQL5 participates in the removal of endogenous DNA damage. Molecular Biology of the Cell, 2012, 23, 4273-4285.	0.9	28
277	Multiple RPAs make WRN syndrome protein a superhelicase. Nucleic Acids Research, 2018, 46, 4689-4698.	6.5	28
278	Efficient PCNA complex formation is dependent upon both transcription coupled repair and genome overall repair. Mutation Research DNA Repair, 1998, 409, 135-146.	3.8	27
279	Werner syndrome protein 1367 variants and disposition towards coronary artery disease in Caucasian patients. Mechanisms of Ageing and Development, 2004, 125, 491-496.	2.2	27
280	Biochemical Characterization of the WRN-1 RecQ Helicase of <i>Caenorhabditis elegans</i> . Biochemistry, 2008, 47, 7583-7593.	1.2	27
281	Cooperation of DNA-PKcs and WRN helicase in the maintenance of telomeric D-loops. Aging, 2010, 2, 274-284.	1.4	27
282	WRN Exonuclease activity is blocked by specific oxidatively induced base lesions positioned in either DNA strand. Nucleic Acids Research, 2008, 36, 4975-4987.	6.5	26
283	Age-Related Disease Association of Endogenous γ-H2AX Foci in Mononuclear Cells Derived from Leukapheresis. PLoS ONE, 2012, 7, e45728.	1.1	26
284	Cockayne syndrome group B deficiency reduces H3K9me3 chromatin remodeler SETDB1 and exacerbates cellular aging. Nucleic Acids Research, 2019, 47, 8548-8562.	6.5	26
285	Cockayne syndrome proteins CSA and CSB maintain mitochondrial homeostasis through NAD ⁺ signaling. Aging Cell, 2020, 19, e13268.	3.0	26
286	Base excision repair causes age-dependent accumulation of single-stranded DNA breaks that contribute to Parkinson disease pathology. Cell Reports, 2021, 36, 109668.	2.9	26
287	DNA repair of pyrimidine dimers and 6-4 photoproducts in the ribosomal DNA. Nucleic Acids Research, 1999, 27, 2511-2520.	6.5	25
288	The RECQL4 protein, deficient in Rothmund–Thomson syndrome is active on telomeric D-loops containing DNA metabolism blocking lesions. DNA Repair, 2013, 12, 518-528.	1.3	25

#	Article	IF	CITATIONS
289	NAP1L1 accelerates activation and decreases pausing to enhance nucleosome remodeling by CSB. Nucleic Acids Research, 2017, 45, 4696-4707.	6.5	25
290	DNA base excision repair activities in mouse models of Alzheimer's disease. Neurobiology of Aging, 2009, 30, 2080-2081.	1.5	24
291	A high-throughput screen to identify novel small molecule inhibitors of the Werner Syndrome Helicase-Nuclease (WRN). PLoS ONE, 2019, 14, e0210525.	1.1	24
292	Nucleolin Inhibits G4 Oligonucleotide Unwinding by Werner Helicase. PLoS ONE, 2012, 7, e35229.	1.1	24
293	DNA binding residues in the RQC domain of Werner protein are critical for its catalytic activities. Aging, 2012, 4, 417-429.	1.4	24
294	Stereospecific Differences in Repair by Human Cell Extracts of Synthesized Oligonucleotides Containing trans-Opened 7,8,9,10-Tetrahydrobenzo[a]pyrene 7,8-Diol 9,10-Epoxide N2-dG Adduct Stereoisomers Located within the Human K-ras Codon 12 Sequence. Biochemistry, 1999, 38, 569-581.	1.2	23
295	Werner syndrome protein associates with \hat{I}^3 H2AX in a manner that depends upon Nbs1. FEBS Letters, 2005, 579, 1350-1356.	1.3	23
296	Human RECQL5β stimulates flap endonuclease 1. Nucleic Acids Research, 2010, 38, 2904-2916.	6.5	23
297	Involvement of Werner syndrome protein in MUTYH-mediated repair of oxidative DNA damage. Nucleic Acids Research, 2012, 40, 8449-8459.	6.5	23
298	RECQL5 plays co-operative and complementary roles with WRN syndrome helicase. Nucleic Acids Research, 2013, 41, 881-899.	6.5	23
299	Slow mitochondrial repair of 5′-AMP renders mtDNA susceptible to damage in APTX deficient cells. Scientific Reports, 2015, 5, 12876.	1.6	23
300	Diminished OPA1 expression and impaired mitochondrial morphology and homeostasis in Aprataxin-deficient cells. Nucleic Acids Research, 2019, 47, 4086-4110.	6.5	23
301	A brain proteomic signature of incipient Alzheimer's disease in young <i>APOE</i> ε4 carriers identifies novel drug targets. Science Advances, 2021, 7, eabi8178.	4.7	23
302	The role of RecQ helicases in non-homologous end-joining. Critical Reviews in Biochemistry and Molecular Biology, 2014, 49, 463-472.	2.3	22
303	Serines 440 and 467 in the Werner syndrome protein are phosphorylated by DNA-PK and affects its dynamics in response to DNA double strand breaks. Aging, 2014, 6, 70-81.	1.4	22
304	Mitochondria, oxidative DNA damage, and aging. Age, 2000, 23, 199-218.	3.0	21
305	Metabolism, Genomics, and DNA Repair in the Mouse Aging Liver. Current Gerontology and Geriatrics Research, 2011, 2011, 1-15.	1.6	21
306	Skin Abnormalities in Disorders with DNA Repair Defects, Premature Aging, and Mitochondrial Dysfunction. Journal of Investigative Dermatology, 2021, 141, 968-975.	0.3	21

#	Article	IF	CITATIONS
307	WRN protects against topo I but not topo II inhibitors by preventing DNA break formation. DNA Repair, 2008, 7, 1999-2009.	1.3	20
308	In Vitro and In Vivo Detection of Mitophagy in Human Cells, C. Elegans , and Mice. Journal of Visualized Experiments, 2017, , .	0.2	20
309	Pathways defective in the human premature aging disease Werner syndrome. Biogerontology, 2002, 3, 89-94.	2.0	19
310	A potential impact of DNA repair on ageing and lifespan in the ageing model organism Podospora anserina: Decrease in mitochondrial DNA repair activity during ageing. Mechanisms of Ageing and Development, 2009, 130, 487-496.	2.2	19
311	Cockayne syndrome protein B interacts with and is phosphorylated by c-Abl tyrosine kinase. Nucleic Acids Research, 2007, 35, 4941-4951.	6.5	18
312	Loss of NEIL1 causes defects in olfactory function in mice. Neurobiology of Aging, 2015, 36, 1007-1012.	1.5	18
313	The human Suv3 helicase interacts with replication protein A and flap endonuclease 1 in the nucleus. Biochemical Journal, 2011, 440, 293-300.	1.7	17
314	RAPADILINO RECQL4 mutant protein lacks helicase and ATPase activity. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2012, 1822, 1727-1734.	1.8	17
315	Partial loss of the DNA repair scaffolding protein, Xrcc1 , results in increased brain damage and reduced recovery from ischemic stroke in mice. Neurobiology of Aging, 2015, 36, 2319-2330.	1.5	17
316	Rev1 contributes to proper mitochondrial function via the PARP-NAD+-SIRT1-PGC1α axis. Scientific Reports, 2017, 7, 12480.	1.6	17
317	Enhanced mitochondrial DNA repair of the common disease-associated variant, Ser326Cys, of hOGG1 through small molecule intervention. Free Radical Biology and Medicine, 2018, 124, 149-162.	1.3	17
318	NEIL1 stimulates neurogenesis and suppresses neuroinflammation after stress. Free Radical Biology and Medicine, 2019, 141, 47-58.	1.3	17
319	Interaction between RECQL4 and OGG1 promotes repair of oxidative base lesion 8-oxoG and is regulated by SIRT1 deacetylase. Nucleic Acids Research, 2020, 48, 6530-6546.	6.5	17
320	Functional deficit associated with a missense Werner syndrome mutation. DNA Repair, 2013, 12, 414-421.	1.3	16
321	Substrate specific stimulation of NEIL1 by WRN but not the other human RecQ helicases. DNA Repair, 2010, 9, 636-642.	1.3	15
322	Transient overexpression of Werner protein rescues starvation induced autophagy in Werner syndrome cells. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2014, 1842, 2387-2394.	1.8	15
323	The DNA structure and sequence preferences of WRN underlie its function in telomeric recombination events. Nature Communications, 2015, 6, 8331.	5.8	15
324	RECQL5 has unique strand annealing properties relative to the other human RecQ helicase proteins. DNA Repair, 2016, 37, 53-66.	1.3	15

#	Article	IF	CITATIONS
325	Emerging Antitumor Activities of the Bitter Melon (Momordica charantia). Current Protein and Peptide Science, 2019, 20, 296-301.	0.7	15
326	Telomeric length in individuals and cell lines with altered p53 status. Radiation Oncology Investigations, 1999, 7, 13-21.	1.3	14
327	Identification of phage antibodies toward the Werner protein by selection on Western blots. Electrophoresis, 2000, 21, 509-516.	1.3	14
328	The Cockayne syndrome group B protein is a functional dimer. FEBS Journal, 2005, 272, 4306-4314.	2.2	13
329	Cene-Specific and Mitochondrial Repair of Oxidative DNA Damage. Methods in Molecular Biology, 2006, 314, 155-181.	0.4	13
330	Catalytic activities of Werner protein are affected by adduction with 4-hydroxy-2-nonenal. Nucleic Acids Research, 2014, 42, 11119-11135.	6.5	13
331	A novel method for determining human <i>ex vivo</i> submaximal skeletal muscle mitochondrial function. Journal of Physiology, 2015, 593, 3991-4010.	1.3	13
332	DNA damage responses in central nervous system and age-associated neurodegeneration. Mechanisms of Ageing and Development, 2017, 161, 1-3.	2.2	13
333	Metal-catalyzed Oxidation of the Werner Syndrome Protein Causes Loss of Catalytic Activities and Impaired Protein-Protein Interactions. Journal of Biological Chemistry, 2007, 282, 36403-36411.	1.6	12
334	Differential and Concordant Roles for Poly(ADP-Ribose) Polymerase 1 and Poly(ADP-Ribose) in Regulating WRN and RECQL5 Activities. Molecular and Cellular Biology, 2015, 35, 3974-3989.	1.1	12
335	NAD+ augmentation with nicotinamide riboside improves lymphoid potential of Atmâ^'/â^' and old mice HSCs. Npj Aging and Mechanisms of Disease, 2021, 7, 25.	4.5	12
336	Cytosolic Self-DNA—A Potential Source of Chronic Inflammation in Aging. Cells, 2021, 10, 3544.	1.8	12
337	The RecQ helicase RECQL5 participates in psoralen-induced interstrand cross-link repair. Carcinogenesis, 2013, 34, 2218-2230.	1.3	11
338	DNA polymerase Î ² outperforms DNA polymerase Î ³ in key mitochondrial base excision repair activities. DNA Repair, 2021, 99, 103050.	1.3	11
339	Telomere, telomerase and aging. Mechanisms of Ageing and Development, 2008, 129, 1-2.	2.2	10
340	Active Control of Repetitive Structural Transitions between Replication Forks and Holliday Junctions by Werner Syndrome Helicase. Structure, 2016, 24, 1292-1300.	1.6	10
341	The helicase and ATPase activities of RECQL4 are compromised by mutations reported in three human patients. Aging, 2012, 4, 790-802.	1.4	10
342	Base excision repair activities differ in human lung cancer cells and corresponding normal controls. Anticancer Research, 2010, 30, 4963-71.	0.5	10

#	Article	IF	CITATIONS
343	Characterization of Specialized mtDNA Glycosylases. , 2002, 197, 227-244.		9
344	Mitochondrial helicases and mitochondrial genome maintenance. Mechanisms of Ageing and Development, 2010, 131, 503-510.	2.2	9
345	DNA Repair and the Accumulation of Oxidatively Damaged DNA Are Affected by Fruit Intake in Mice. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2010, 65A, 1300-1311.	1.7	9
346	Dynamics of the DNA repair proteins WRN and BLM in the nucleoplasm and nucleoli. European Biophysics Journal, 2014, 43, 509-516.	1.2	9
347	Alteration of mitochondrial homeostasis is an early event in a C. elegans model of human tauopathy. Aging, 2021, 13, 23876-23894.	1.4	9
348	Increased deoxythymidine triphosphate levels is a feature of relative cognitive decline. Mitochondrion, 2015, 25, 34-37.	1.6	8
349	Regulation of the Intranuclear Distribution of the Cockayne Syndrome Proteins. Scientific Reports, 2018, 8, 17490.	1.6	8
350	Deletion of OGG1 Results in a Differential Signature of Oxidized Purine Base Damage in mtDNA Regions. International Journal of Molecular Sciences, 2019, 20, 3302.	1.8	8
351	NEK1 deficiency affects mitochondrial functions and the transcriptome of key DNA repair pathways. Mutagenesis, 2021, 36, 223-236.	1.0	8
352	LEO1 is a partner for Cockayne syndrome protein B (CSB) in response to transcription-blocking DNA damage. Nucleic Acids Research, 2021, 49, 6331-6346.	6.5	8
353	WRN's Tenth Anniversary. Science of Aging Knowledge Environment: SAGE KE, 2006, 2006, pe18-pe18.	0.9	8
354	Molecular markers of DNA repair and brain metabolism correlate with cognition in centenarians. GeroScience, 2022, 44, 103-125.	2.1	8
355	DNA-PKcs-dependent phosphorylation of RECQL4 promotes NHEJ by stabilizing the NHEJ machinery at DNA double-strand breaks. Nucleic Acids Research, 2022, 50, 5635-5651.	6.5	8
356	Quantitation of 2-amino-3-methylimidazo[4,5-f]quinoline and 2-amino-3,8-dimethylimidazo[4,5-f]quinoxaline DNA adducts in specific sequences using alkali or uvrABC excinuclease. Molecular Carcinogenesis, 1993, 7, 126-134.	1.3	7
357	Mechanism of Werner DNA Helicase: POT1 and RPA Stimulates WRN to Unwind beyond Gaps in the Translocating Strand. PLoS ONE, 2009, 4, e4673.	1.1	7
358	Werner syndrome resembles normal aging. Cell Cycle, 2009, 8, 2319-2323.	1.3	7
359	Special Issue on the segmental progeria Cockayne syndrome. Mechanisms of Ageing and Development, 2013, 134, 159-160.	2.2	7
360	Acidic domain of WRNp is critical for autophagy and up-regulates age associated proteins. DNA Repair, 2018, 68, 1-11.	1.3	7

1

#	Article	IF	CITATIONS
361	DNA Repair and Transcription in Human Premature Aging Disorders. Journal of Investigative Dermatology, 1998, 3, 11-13.	0.3	7
362	CDK2 phosphorylation of Werner protein (WRN) contributes to WRN's DNA doubleâ€strand break repair pathway choice. Aging Cell, 2021, 20, e13484.	3.0	7
363	Effect of aging on EGF-stimulated replication of specific genes in rat hepatocytes. , 1998, 176, 32-39.		6
364	Acquired Localized Cutis Laxa due to Increased Elastin Turnover. Case Reports in Dermatology, 2016, 8, 42-51.	0.3	6
365	Acetylation of Werner protein at K1127 and K1117 is important for nuclear trafficking and DNA repair. DNA Repair, 2019, 79, 22-31.	1.3	6
366	Heterogeneity of Dna Repair: Implications for Human Disease and Oncology. Pediatric Hematology and Oncology, 1990, 7, 47-69.	0.3	5
367	DNA-Related Pathways Defective in Human Premature Aging. Scientific World Journal, The, 2002, 2, 1216-1226.	0.8	5
368	Quantitative analysis of WRN exonuclease activity by isotope dilution mass spectrometry. Mechanisms of Ageing and Development, 2012, 133, 575-579.	2.2	5
369	Pentoxifylline inhibits gene-specific repair of UV-induced DNA damage in hamster cells. Radiation Oncology Investigations, 1996, 4, 115-121.	1.3	4
370	DNA secondary structure of the released strand stimulates WRN helicase action on forked duplexes without coordinate action of WRN exonuclease. Biochemical and Biophysical Research Communications, 2011, 411, 684-689.	1.0	4
371	Werner syndrome resembles normal aging. Cell Cycle, 2009, 8, 2323.	1.3	4
372	Opinion section on frailty. Mechanisms of Ageing and Development, 2008, 129, 665.	2.2	3
373	Diverse Dealings of the Werner Helicase/Nuclease. Science of Aging Knowledge Environment: SAGE KE, 2003, 2003, 22pe-22.	0.9	3
374	Neuropsychological sequelae in 91 cases of pneumococcal meningitis. Developmental Neuropsychology, 1992, 8, 447-457.	1.0	2
375	Gene-Specific and Mitochondrial Repair of Oxidative DNA Damage. , 1999, 113, 257-279.		2
376	Analysis of microsatellite instability and hypermutation of immunoglobulin variable genes in Werner syndrome. Mechanisms of Ageing and Development, 2001, 122, 1121-1133.	2.2	2
377	Regulation of the human Suv3 helicase on DNA by inorganic cofactors. Biochimie, 2015, 108, 160-168.	1.3	1

Base Excision Repair in Aging. , 2017, , 773-803.

#	Article	IF	CITATIONS
379	Worldwide Studies on Cockayne Syndrome are Needed. Neurology India, 2021, 69, 367.	0.2	1
380	Genomic Instability in Human Premature Aging. , 2003, , 65-77.		1
381	Overview of DNA Repair Pathways. , 2013, , 1-24.		1
382	Earl R. Stadtman. Mechanisms of Ageing and Development, 2010, 131, 1.	2.2	0
383	3rd International Genome Dynamics in Neuroscience Conference: "DNA repair and neurological disease― Mechanisms of Ageing and Development, 2011, 132, 353-354.	2.2	0
384	DNA Repair: Front and Center and Not Going Away!. Methods in Molecular Biology, 2012, 920, 1-6.	0.4	0
385	Werner syndrome: association of premature aging and cancer predisposition. , 0, , 423-433.		0
386	DNA Repair in Mammalian Mitochondria. , 2002, , 744-758.		0
387	Proposed Biological Functions for the Werner Syndrome Protein in DNA Metabolism. , 2004, , 123-132.		0
388	Linking Human RecQ Helicases to DNA Damage Response and Aging. , 2009, , 331-347.		0
389	Role of RecQ Helicases in Nuclear DNA Repair and Telomere Maintenance. , 2010, , 45-62.		0
390	Characterization of RecQL4 biochemical and cellular functions. FASEB Journal, 2011, 25, lb33.	0.2	0
391	Xeroderma pigmentosum group A protein modulates mitophagy through regulation of mitochondrialâ€associated proteins. FASEB Journal, 2013, 27, lb468.	0.2	0
392	Gene-Specific and Mitochondrial Repair of Oxidative DNA Damage. , 1999, , 257-279.		0