Etienne C Hirsch

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9490480/publications.pdf

Version: 2024-02-01

299 papers 35,155 citations

94 h-index 177 g-index

301 all docs

301 docs citations

301 times ranked

25958 citing authors

#	Article	IF	CITATIONS
1	Neuroinflammation in Parkinson's disease: a target for neuroprotection?. Lancet Neurology, The, 2009, 8, 382-397.	4.9	1,648
2	The substantia nigra of the human brain. Brain, 1999, 122, 1437-1448.	3.7	1,481
3	Melanized dopaminergic neurons are differentially susceptible to degeneration in Parkinson's disease. Nature, 1988, 334, 345-348.	13.7	1,180
4	Infiltration of CD4+ lymphocytes into the brain contributes to neurodegeneration in a mouse model of Parkinson disease. Journal of Clinical Investigation, 2009, 119, 182-92.	3.9	875
5	Dopamine depletion impairs precursor cell proliferation in Parkinson disease. Nature Neuroscience, 2004, 7, 726-735.	7.1	842
6	Nuclear translocation of NF-ÂB is increased in dopaminergic neurons of patients with Parkinson disease. Proceedings of the National Academy of Sciences of the United States of America, 1997, 94, 7531-7536.	3.3	657
7	Caspase-3: A vulnerability factor and final effector in apoptotic death of dopaminergic neurons in Parkinson's disease. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97, 2875-2880.	3.3	644
8	Missing pieces in the Parkinson's disease puzzle. Nature Medicine, 2010, 16, 653-661.	15.2	621
9	Nitric oxide synthase and neuronal vulnerability in parkinson's disease. Neuroscience, 1996, 72, 355-363.	1.1	556
10	Immunocytochemical analysis of tumor necrosis factor and its receptors in Parkinson's disease. Neuroscience Letters, 1994, 172, 151-154.	1.0	532
11	Neuroinflammation in Parkinson's disease. Parkinsonism and Related Disorders, 2012, 18, S210-S212.	1.1	516
12	Iron and Aluminum Increase in the Substantia Nigra of Patients with Parkinson's Disease: An X-Ray Microanalysis. Journal of Neurochemistry, 1991, 56, 446-451.	2.1	501
13	Neuronal loss in the pedunculopontine tegmental nucleus in Parkinson disease and in progressive supranuclear palsy Proceedings of the National Academy of Sciences of the United States of America, 1987, 84, 5976-5980.	3.3	499
14	Understanding Dopaminergic Cell Death Pathways in Parkinson Disease. Neuron, 2016, 90, 675-691.	3.8	460
15	Pedunculopontine Nucleus Region Deep Brain Stimulation in Parkinson Disease: Surgical Anatomy and Terminology. Stereotactic and Functional Neurosurgery, 2016, 94, 298-306.	0.8	452
16	Cellular localization of the Huntington's disease protein and discrimination of the normal and mutated form. Nature Genetics, 1995, 10, 104-110.	9.4	431
17	Glutathione peroxidase, glial cells and Parkinson's disease. Neuroscience, 1993, 52, 1-6.	1.1	422
18	FcεRII/CD23 Is Expressed in Parkinson's Disease and Induces, <i>In Vitro,</i> Production of Nitric Oxide and Tumor Necrosis Factor-α in Glial Cells. Journal of Neuroscience, 1999, 19, 3440-3447.	1.7	399

#	Article	IF	CITATIONS
19	JNK-mediated induction of cyclooxygenase 2 is required for neurodegeneration in a mouse model of Parkinson's disease. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 665-670.	3.3	396
20	The substantia nigra of the human brain. Brain, 1999, 122, 1421-1436.	3.7	395
21	The Role of Glial Reaction and Inflammation in Parkinson's Disease. Annals of the New York Academy of Sciences, 2003, 991, 214-228.	1.8	394
22	Cholinergic mesencephalic neurons are involved in gait and postural disorders in Parkinson disease. Journal of Clinical Investigation, 2010, 120, 2745-2754.	3.9	359
23	Divalent metal transporter 1 (DMT1) contributes to neurodegeneration in animal models of Parkinson's disease. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 18578-18583.	3.3	354
24	Neuroinflammatory processes in Parkinson's disease. Annals of Neurology, 2003, 53, S49-S60.	2.8	353
25	Parkin prevents mitochondrial swelling and cytochrome c release in mitochondria-dependent cell death. Human Molecular Genetics, 2003, 12, 517-526.	1.4	352
26	Protective action of the peroxisome proliferator-activated receptor- \hat{l}^3 agonist pioglitazone in a mouse model of Parkinson's disease. Journal of Neurochemistry, 2002, 82, 615-624.	2.1	347
27	Spinocerebellar ataxia type 7 (SCA7): a neurodegenerative disorder with neuronal intranuclear inclusions. Human Molecular Genetics, 1998, 7, 913-918.	1.4	308
28	Activation of the subventricular zone in multiple sclerosis: Evidence for early glial progenitors. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 4694-4699.	3.3	299
29	Glial cells and inflammation in parkinson's disease: A role in neurodegeneration?. Annals of Neurology, 1998, 44, S115-20.	2.8	289
30	Chronic systemic complex I inhibition induces a hypokinetic multisystem degeneration in rats. Journal of Neurochemistry, 2003, 84, 491-502.	2.1	284
31	Reduced expression of brain-derived neurotrophic factor protein in Parkinson's disease substantia nigra. NeuroReport, 1999, 10, 557-561.	0.6	272
32	Re-evaluation of the functional anatomy of the basal ganglia in normal and Parkinsonian states. Neuroscience, 1997, 76, 335-343.	1.1	262
33	Novel pharmacological targets for the treatment of Parkinson's disease. Nature Reviews Drug Discovery, 2006, 5, 845-854.	21.5	262
34	Pathogenesis of Parkinson's disease. Movement Disorders, 2013, 28, 24-30.	2.2	256
35	Subthalamotomy in parkinsonian monkeys Behavioural and biochemical analysis. Brain, 1996, 119, 1717-1727.	3.7	248
36	The pRb/E2F cell-cycle pathway mediates cell death in Parkinson's disease. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 3585-3590.	3.3	245

#	Article	IF	Citations
37	Caspase-8 Is an Effector in Apoptotic Death of Dopaminergic Neurons in Parkinson's Disease, But Pathway Inhibition Results in Neuronal Necrosis. Journal of Neuroscience, 2001, 21, 2247-2255.	1.7	242
38	Dysfunction of mitochondrial complex I and the proteasome: interactions between two biochemical deficits in a cellular model of Parkinson's disease. Journal of Neurochemistry, 2003, 86, 1297-1307.	2.1	239
39	Dopaminergic and cholinergic lesions in progressive supranuclear palsy. Annals of Neurology, 1985, 18, 523-529.	2.8	228
40	Is the Vulnerability of Neurons in the Substantia Nigra of Patients with Parkinson's Disease Related to Their Neuromelanin Content?. Journal of Neurochemistry, 1992, 59, 1080-1089.	2.1	218
41	The p38 subunit of the aminoacyl-tRNA synthetase complex is a Parkin substrate: linking protein biosynthesis and neurodegeneration. Human Molecular Genetics, 2003, 12, 1427-1437.	1.4	217
42	Involvement of Mitochondrial Complex II Defects in Neuronal Death Produced by N-Terminus Fragment of Mutated Huntingtin. Molecular Biology of the Cell, 2006, 17, 1652-1663.	0.9	217
43	Crosslinking of $\hat{I}\pm$ -synuclein by advanced glycation endproducts $\hat{a}\in$ " an early pathophysiological step in Lewy body formation?. Journal of Chemical Neuroanatomy, 2000, 20, 253-257.	1.0	212
44	Cystamine and cysteamine increase brain levels of BDNF in Huntington disease via HSJ1b and transglutaminase. Journal of Clinical Investigation, 2006, 116, 1410-1424.	3.9	211
45	Behavioural disorders induced by external globus pallidus dysfunction in primates: I. Behavioural study. Brain, 2004, 127, 2039-2054.	3.7	210
46	Neuromelanin associated redoxâ€active iron is increased in the substantia nigra of patients with Parkinson's disease. Journal of Neurochemistry, 2003, 86, 1142-1148.	2.1	206
47	Blood vessels change in the mesencephalon of patients with Parkinson's disease. Lancet, The, 1999, 353, 981-982.	6.3	202
48	Expression of lactoferrin receptors is increased in the mesencephalon of patients with Parkinson disease Proceedings of the National Academy of Sciences of the United States of America, 1995, 92, 9603-9607.	3.3	195
49	Heterogeneity and selectivity of the degeneration of cholinergic neurons in the basal forebrain of patients with Alzheimer's disease. Journal of Comparative Neurology, 1993, 330, 15-31.	0.9	194
50	Does adrenal graft enhance recovery of dopaminergic neurons in Parkinson's disease?. Annals of Neurology, 1990, 27, 676-682.	2.8	191
51	Annonacin, a lipophilic inhibitor of mitochondrial complex I, induces nigral and striatal neurodegeneration in rats: possible relevance for atypical parkinsonism in Guadeloupe. Journal of Neurochemistry, 2004, 88, 63-69.	2.1	187
52	Microglial glucocorticoid receptors play a pivotal role in regulating dopaminergic neurodegeneration in parkinsonism. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 6632-6637.	3.3	184
53	The mitochondrial complex I inhibitor rotenone triggers a cerebral tauopathy. Journal of Neurochemistry, 2005, 95, 930-939.	2.1	183
54	Evidence of active microglia in substantia nigra pars compacta of parkinsonian monkeys 1 year after MPTP exposure. Glia, 2004, 46, 402-409.	2.5	181

#	Article	IF	CITATIONS
55	Neuroinflammatory processes in Parkinson's disease. Parkinsonism and Related Disorders, 2005, 11, S9-S15.	1.1	181
56	Annonacin, a Natural Mitochondrial Complex I Inhibitor, Causes Tau Pathology in Cultured Neurons. Journal of Neuroscience, 2007, 27, 7827-7837.	1.7	176
57	Behavioural disorders induced by external globus pallidus dysfunction in primates II. Anatomical study. Brain, 2004, 127, 2055-2070.	3.7	171
58	Evolution of changes in neuronal activity in the subthalamic nucleus of rats with unilateral lesion of the substantia nigra assessed by metabolic and electrophysiological measurements. European Journal of Neuroscience, 2000, 12, 337-344.	1,2	168
59	An immunohistochemical study of the distribution of brain-derived neurotrophic factor in the adult human brain, with particular reference to Alzheimer's disease. Neuroscience, 1999, 88, 1015-1032.	1.1	166
60	Biochemistry of Parkinson's disease 28 years later: A critical review. Movement Disorders, 1989, 4, S126-S144.	2.2	154
61	Consequences of Nigrostriatal Denervation on the Functioning of the Basal Ganglia in Human and Nonhuman Primates: An <i>In Situ</i> Hybridization Study of Cytochrome Oxidase Subunit I mRNA. Journal of Neuroscience, 1997, 17, 765-773.	1.7	154
62	Metabolic activity of excitatory parafascicular and pedunculopontine inputs to the subthalamic nucleus in a rat model of Parkinson's disease. Neuroscience, 2000, 97, 79-88.	1.1	153
63	Thalamic Neuronal Activity in Dopamine-Depleted Primates: Evidence for a Loss of Functional Segregation within Basal Ganglia Circuits. Journal of Neuroscience, 2005, 25, 1523-1531.	1.7	153
64	The mitochondrial complex i inhibitor annonacin is toxic to mesencephalic dopaminergic neurons by impairment of energy metabolism. Neuroscience, 2003, 121, 287-296.	1.1	150
65	Nuclear translocation of NF-κB in cholinergic neurons of patients with Alzheimer's disease. NeuroReport, 1997, 8, 2849-2852.	0.6	147
66	Dopaminergic neurons degenerate by apoptosis in Parkinson's disease. Movement Disorders, 1999, 14, 383-384.	2.2	147
67	Increased m-calpain expression in the mesencephalon of patients with parkinson's disease but not in other neurodegenerative disorders involving the mesencephalon: a role in nerve cell death?. Neuroscience, 1996, 73, 979-987.	1.1	146
68	Persistent Increase in Olfactory Type G-Protein Subunit Levels May Underlie D1 Receptor Functional Hypersensitivity in Parkinson Disease. Journal of Neuroscience, 2004, 24, 7007-7014.	1.7	146
69	Decreased tyrosine hydroxylase messenger RNA in the surviving dopamine neurons of the substantia nigra in parkinson's disease: An in situ hybridization study. Neuroscience, 1990, 38, 245-253.	1.1	143
70	Preservation of midbrain catecholaminergic neurons in very old human subjects. Brain, 2000, 123, 366-373.	3.7	139
71	Is Bax a mitochondrial mediator in apoptotic death of dopaminergic neurons in Parkinson's disease?. Journal of Neurochemistry, 2001, 76, 1785-1793.	2.1	138
72	Dopaminergic Substantia Nigra Neurons Project Topographically Organized to the Subventricular Zone and Stimulate Precursor Cell Proliferation in Aged Primates. Journal of Neuroscience, 2006, 26, 2321-2325.	1.7	138

#	Article	IF	CITATIONS
73	Effects of I-DOPA on preproenkephalin and preprotachykinin gene expression in the MPTP-treated monkey striatum. Neuroscience, 1995, 68, 1189-1198.	1.1	136
74	Toll like receptor 4 mediates cell death in a mouse MPTP model of Parkinson disease. Scientific Reports, 2013, 3, 1393.	1.6	134
75	Ten Unsolved Questions About Neuroinflammation in Parkinson's Disease. Movement Disorders, 2021, 36, 16-24.	2.2	133
76	New striatal dopamine neurons in MPTP-treated macaques result from a phenotypic shift and not neurogenesis. Brain, 2006, 129, 1194-1200.	3.7	124
77	A new model to study compensatory mechanisms in MPTP-treated monkeys exhibiting recovery. Brain, 2007, 130, 2898-2914.	3.7	124
78	Neuronal vulnerability in Parkinson's disease. Journal of Neural Transmission Supplementum, 1997, 50, 79-88.	0.5	118
79	Why are nigral catecholaminergic neurons more vulnerable than other cells in Parkinson's disease?. Annals of Neurology, 1992, 32, S88-S93.	2.8	117
80	The pallidosubthalamic projection: An anatomical substrate for nonmotor functions of the subthalamic nucleus in primates. Movement Disorders, 2005, 20, 172-180.	2.2	116
81	Normal and pathological gait: what we learn from Parkinson's disease: Figure 1. Journal of Neurology, Neurosurgery and Psychiatry, 2012, 83, 979-985.	0.9	116
82	Differences in tyrosine hydroxylase-like immunoreactivity characterize the mesostriatal innervation of striosomes and extrastriosomal matrix at maturity Proceedings of the National Academy of Sciences of the United States of America, 1987, 84, 303-307.	3.3	115
83	Cellular distribution of the iron-binding protein lactotransferrin in the mesencephalon of Parkinson's disease cases. Acta Neuropathologica, 1996, 91, 566-572.	3.9	111
84	Lack of up-regulation of ferritin is associated with sustained iron regulatory protein-1 binding activity in the substantia nigra of patients with Parkinson's disease. Journal of Neurochemistry, 2002, 83, 320-330.	2.1	111
85	Altered expression of vesicular glutamate transporters VGLUT1 and VGLUT2 in Parkinson disease. Neurobiology of Aging, 2007, 28, 568-578.	1.5	109
86	Rescue of Mesencephalic Dopaminergic Neurons in Culture by Low-Level Stimulation of Voltage-Gated Sodium Channels. Journal of Neuroscience, 2004, 24, 5922-5930.	1.7	106
87	Does the calcium binding protein calretinin protect dopaminergic neurons against degeneration in Parkinson's disease?. Brain Research, 1994, 668, 62-70.	1.1	105
88	Metabolic activity of the basal ganglia in parkinsonian syndromes in human and non-human primates: A cytochrome oxidase histochemistry study. Neuroscience, 1996, 71, 903-912.	1.1	104
89	Does Oxidative Stress Participate in Nerve Cell Death in Parkinson's Disease?. European Neurology, 1993, 33, 52-59.	0.6	103
90	Synaptic Plasticity in the Caudate Nucleus of Patients with Parkinson's Disease. Experimental Neurology, 1996, 5, 121-128.	1.7	102

#	Article	IF	CITATIONS
91	Dopaminergic innervation of the subthalamic nucleus in the normal state, in MPTP-treated monkeys, and in Parkinson's disease patients. Journal of Comparative Neurology, 2000, 425, 121-129.	0.9	100
92	Atypical parkinsonism in Guadeloupe: a common risk factor for two closely related phenotypes?. Brain, 2007, 130, 816-827.	3.7	99
93	Does neuromelanin contribute to the vulnerability of catecholaminergic neurons in monkeys intoxicated with MPTP?. Neuroscience, 1993, 56, 499-511.	1.1	97
94	Caspase-3 activation in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-treated mice. Movement Disorders, 2001, 16, 185-189.	2.2	97
95	Changes in vascularization in substantia nigra pars compacta of monkeys rendered parkinsonian. Journal of Neural Transmission, 2005, 112, 1237-1248.	1.4	94
96	Bee Venom and Its Component Apamin as Neuroprotective Agents in a Parkinson Disease Mouse Model. PLoS ONE, 2013, 8, e61700.	1.1	93
97	Cigarette smoke and nicotine protect dopaminergic neurons against the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine Parkinsonian toxin. Brain Research, 2003, 984, 224-232.	1.1	90
98	Behavioral changes are not directly related to striatal monoamine levels, number of nigral neurons, or dose of parkinsonian toxin MPTP in mice. Neurobiology of Disease, 2003, 14, 218-228.	2.1	90
99	Consequence of nigrostriatal denervation and L-dopa therapy on the expression of glutamic acid decarboxylase messenger RNA in the pallidum. Neurology, 1996, 47, 219-224.	1.5	88
100	Heterogeneous Intracellular Localization and Expression of Ataxin-3. Neurobiology of Disease, 1998, 5, 335-347.	2.1	88
101	Metabolic effects of nigrostriatal denervation in basal ganglia. Trends in Neurosciences, 2000, 23, S78-S85.	4.2	88
102	Paraxanthine, the Primary Metabolite of Caffeine, Provides Protection against Dopaminergic Cell Death via Stimulation of Ryanodine Receptor Channels. Molecular Pharmacology, 2008, 74, 980-989.	1.0	86
103	Mesencephalic cholinergic nuclei in progressive supranuclear palsy. Neurology, 1991, 41, 25-25.	1.5	85
104	Glial cell line-derived neurotrophic factor (GDNF) gene expression in the human brain: A post mortem in situ hybridization study with special reference to Parkinson's disease. Journal of Neural Transmission, 1996, 103, 1043-1052.	1.4	84
105	Behavioral Recovery in MPTP-Treated Monkeys: Neurochemical Mechanisms Studied by Intrastriatal Microdialysis. Journal of Neuroscience, 2008, 28, 9575-9584.	1.7	84
106	c-fos protein-like immunoreactivity: Distribution in the human brain and over-expression in the hippocampus of patients with Alzheimer's disease. Neuroscience, 1992, 46, 9-21.	1.1	82
107	Role of TNF-α Receptors in Mice Intoxicated with the Parkinsonian Toxin MPTP. Experimental Neurology, 2002, 177, 183-192.	2.0	81
108	Three-dimensional cartography of functional territories in the human striatopallidal complex by using calbindin immunoreactivity. Journal of Comparative Neurology, 2002, 450, 122-134.	0.9	81

#	Article	IF	Citations
109	Expression of glutamate receptors in the human and rat basal ganglia: Effect of the dopaminergic denervation on AMPA receptor gene expression in the striatopallidal complex in parkinson's disease and rat with 6-OHDA lesion., 1996, 368, 553-568.		80
110	Gait Disorders in Parkinsonian Monkeys with Pedunculopontine Nucleus Lesions: A Tale of Two Systems. Journal of Neuroscience, 2013, 33, 11986-11993.	1.7	80
111	Selective loss of cholinergic neurons in the ventral striatum of patients with Alzheimer disease Proceedings of the National Academy of Sciences of the United States of America, 1989, 86, 8580-8584.	3.3	79
112	Dopamine, tremor, and Parkinson's disease. Lancet, The, 1992, 340, 125-126.	6.3	79
113	Dopaminergic cell group A8 in the monkey: Anatomical organization and projections to the striatum. , 1999, 414, 334-347.		79
114	Protection of midbrain dopaminergic neurons by the endâ€product of purine metabolism uric acid: potentiation by lowâ€evel depolarization. Journal of Neurochemistry, 2009, 109, 1118-1128.	2.1	79
115	Superoxide dismutase and Parkinson's disease. Lancet, The, 1990, 335, 1035-1036.	6.3	77
116	Levodopa induces a cytoplasmic localization of D1 dopamine receptors in striatal neurons in Parkinson's disease. Annals of Neurology, 1999, 46, 103-111.	2.8	77
117	Biochemistry of Parkinson's disease with special reference to the dopaminergic systems. Molecular Neurobiology, 1994, 9, 135-142.	1.9	74
118	Behavioral Consequences of Bicuculline Injection in the Subthalamic Nucleus and the Zona Incerta in Rat. Journal of Neuroscience, 2002, 22, 8711-8719.	1.7	74
119	Tyrosine hydroxylase protein and messenger RNA in the dopaminergic nigral neurons of patients with Parkinson's disease. Brain Research, 1993, 606, 341-345.	1.1	73
120	Decreased TrkA Gene Expression in Cholinergic Neurons of the Striatum and Basal Forebrain of Patients with Alzheimer's Disease. Experimental Neurology, 1997, 145, 245-252.	2.0	73
121	Does monoamine oxidase type B play a role in dopaminergic nerve cell death in Parkinson's disease?. Neurology, 1996, 46, 1262-1262.	1.5	72
122	Consequences of nigrostriatal denervation on the gamma-aminobutyric acidic neurons of substantia nigra pars reticulata and superior colliculus in parkinsonian syndromes. Neurology, 1996, 46, 802-809.	1.5	72
123	Neuroprotection of midbrain dopamine neurons by nicotine is gated by cytoplasmic Ca ²⁺ . FASEB Journal, 2011, 25, 2563-2573.	0.2	72
124	Selective vulnerability of pigmented dopaminergic neurons in Parkinson's disease. Acta Neurologica Scandinavica, 1989, 80, 19-22.	1.0	71
125	Choline acetyltransferase-like immunoreactivity in the hippocampal formation of control subjects and patients with Alzheimer's disease. Neuroscience, 1989, 32, 701-714.	1.1	71
126	The Phenotypic Differentiation of Locus Ceruleus Noradrenergic Neurons Mediated by Brain-Derived Neurotrophic Factor Is Enhanced by Corticotropin Releasing Factor through the Activation of a cAMP-Dependent Signaling Pathway. Molecular Pharmacology, 2006, 70, 30-40.	1.0	71

#	Article	IF	CITATIONS
127	Tremor-related activity of neurons in the â€~motor' thalamus: changes in firing rate and pattern in the MPTP vervet model of parkinsonism. European Journal of Neuroscience, 2003, 17, 2388-2400.	1.2	69
128	Decreased choline acetyltransferase mRNA expression in the nucleus basalis of Meynert in Alzheimer disease: an in situ hybridization study Proceedings of the National Academy of Sciences of the United States of America, 1992, 89, 9549-9553.	3.3	68
129	The Iron-Binding Protein Lactoferrin Protects Vulnerable Dopamine Neurons from Degeneration by Preserving Mitochondrial Calcium Homeostasis. Molecular Pharmacology, 2013, 84, 888-898.	1.0	68
130	NMDA receptor GluN2A/GluN2B subunit ratio as synaptic trait of levodopa-induced dyskinesias: from experimental models to patients. Frontiers in Cellular Neuroscience, 2015, 9, 245.	1.8	68
131	Modelling Parkinsonâ€like neurodegeneration via osmotic minipump delivery of MPTP and probenecid. Journal of Neurochemistry, 2008, 107, 701-711.	2.1	67
132	Metabolic activity of cerebellar and basal ganglia-thalamic neurons is reduced in parkinsonism. Brain, 2006, 130, 265-275.	3.7	66
133	Striosomes and extrastriosomal matrix contain different amounts of immunoreactive choline acetyltransferase in the human striatum. Neuroscience Letters, 1989, 96, 145-150.	1.0	63
134	Flavaglines as Potent Anticancer and Cytoprotective Agents. Journal of Medicinal Chemistry, 2012, 55, 10064-10073.	2.9	63
135	Alterations of GABAergic neurons in the basal ganglia of patients with progressive supranuclear palsy. Neurology, 1995, 45, 127-134.	1.5	62
136	FADD: A link between TNF family receptors and caspases in Parkinson's disease. Neurology, 2002, 58, 308-310.	1.5	62
137	Immunocytochemical Quantification of Tyrosine Hydroxylase at a Cellular Level in the Mesencephalon of Control Subjects and Patients with Parkinson's and Alzheimer's Disease. Journal of Neurochemistry, 1993, 61, 1024-1034.	2.1	61
138	Distribution of ataxin-7 in normal human brain and retina. Brain, 2000, 123, 2519-2530.	3.7	60
139	Effect of mitochondrial complex I inhibition on Fe–S cluster protein activity. Biochemical and Biophysical Research Communications, 2011, 409, 241-246.	1.0	60
140	Distribution of manganese-dependent superoxide dismutase in the human brain. Neuroscience, 1994, 61, 317-330.	1.1	59
141	Effects of Nigrostriatal Denervation and L-Dopa Therapy on the GABAergic Neurons of the Striatum in MPTP-treated Monkeys and Parkinson's Disease: AnIn SituHybridization Study of GAD67mRNA. European Journal of Neuroscience, 1995, 7, 1199-1209.	1.2	59
142	Neuronal distribution of intranuclear inclusions in Huntington $\hat{E}\frac{1}{4}$ s disease with adult onset. NeuroReport, 1998, 9, 1823-1826.	0.6	59
143	Specific needs of dopamine neurons for stimulation in order to survive: implication for Parkinson disease. FASEB Journal, 2013, 27, 3414-3423.	0.2	59
144	The Oxygen Paradox, the French Paradox, and age-related diseases. GeroScience, 2017, 39, 499-550.	2.1	59

#	Article	IF	Citations
145	Somatic mosaicism of the CAG repeat expansion in spinocerebellar ataxia type 3/Machado-Joseph disease. Human Mutation, 1998, 11, 23-27.	1.1	58
146	The Neurotransmitter Noradrenaline Rescues Septal Cholinergic Neurons in Culture from Degeneration Caused by Low-Level Oxidative Stress. Molecular Pharmacology, 2005, 67, 1882-1891.	1.0	58
147	Glial cells and Parkinson's disease. Journal of Neurology, 2000, 247, II58-II62.	1.8	57
148	Inflammation and dopaminergic neuronal loss in Parkinson's disease: a complex matter. Experimental Neurology, 2003, 184, 561-564.	2.0	57
149	Immunohistochemical study of catechol-O-methyltransferase in the human mesostriatal system. Neuroscience, 1994, 62, 449-457.	1.1	55
150	Functional Activity of Zona Incerta Neurons Is Altered after Nigrostriatal Denervation in Hemiparkinsonian Rats. Experimental Neurology, 2000, 162, 215-224.	2.0	54
151	Nitric oxide, glial cells and neuronal degeneration in parkinsonism. Trends in Pharmacological Sciences, 2000, 21, 163-165.	4.0	54
152	Pedunculopontine Nucleus Region Deep Brain Stimulation in Parkinson Disease: Surgical Techniques, Side Effects, and Postoperative Imaging. Stereotactic and Functional Neurosurgery, 2016, 94, 307-319.	0.8	54
153	Differential vulnerability of cholinergic projections to the mediodorsal nucleus of the thalamus in senile dementia of Alzheimer type and progressive supranuclear palsy. Neuroscience, 1991, 41, 25-31.	1.1	53
154	GM-1 ganglioside promotes the recovery of surviving midbrain dopaminergic neurons in MPTP-treated monkeys. Neuroscience, 1993, 56, 965-972.	1.1	53
155	Glucocorticoid receptor in astrocytes regulates midbrain dopamine neurodegeneration through connexin hemichannel activity. Cell Death and Differentiation, 2019, 26, 580-596.	5.0	53
156	Stathmin: Cellular localization of a major phosphoprotein in the adult rat and human CNS. Journal of Comparative Neurology, 1993, 337, 655-668.	0.9	51
157	Distribution of 125I-Ferrotransferrin Binding Sites in the Mesencephalon of Control Subjects and Patients with Parkinson's Disease. Journal of Neurochemistry, 1993, 60, 2338-2341.	2.1	51
158	Analysis of monocyte infiltration in MPTP mice reveals that microglial CX3CR1 protects against neurotoxic over-induction of monocyte-attracting CCL2 by astrocytes. Journal of Neuroinflammation, 2017, 14, 60.	3.1	50
159	Quantitative Autoradiography of Tyrosine Hydroxylase Immunoreactivity in the Rat Brain. Journal of Neurochemistry, 1991, 57, 1212-1222.	2.1	49
160	Consequences of Dopaminergic Denervation on the Metabolic Activity of the Cortical Neurons Projecting to the Subthalamic Nucleus in the Rat. Journal of Neuroscience, 2002, 22, 8762-8770.	1.7	49
161	Neuronal vulnerability in Parkinson's disease. Parkinsonism and Related Disorders, 2012, 18, S52-S54.	1.1	49
162	Hepcidin attenuates amyloid betaâ€induced inflammatory and proâ€oxidant responses in astrocytes and microglia. Journal of Neurochemistry, 2017, 142, 140-152.	2.1	49

#	Article	IF	CITATIONS
163	Somatostatin messenger rna-containing neurons in Alzheimer's disease: An in situ hybridization study in hippocampus, parahippocampal cortex and frontal cortex. Neuroscience, 1994, 61, 755-764.	1.1	48
164	Differential distribution of the normal and mutated forms of huntingtin in the human brain. Annals of Neurology, 1997, 42, 712-719.	2.8	48
165	Parkin immunoreactivity in the brain of human and non-human primates: An immunohistochemical analysis in normal conditions and in Parkinsonian syndromes. Journal of Comparative Neurology, 2001, 432, 184-196.	0.9	48
166	Decreased tyrosine hydroxylase content in the dopaminergic neurons of MPTP-intoxicated monkeys: Effect of levodopa and GM1 ganglioside therapy. Annals of Neurology, 1994, 36, 206-214.	2.8	47
167	The density of [1251]-transferrin binding sites on perikarya of melanized neurons of the substantia nigra is decreased in Parkinson's disease. Brain Research, 1997, 749, 170-174.	1.1	47
168	Systemic Administration of NMDA and AMPA Receptor Antagonists Reverses the Neurochemical Changes Induced by Nigrostriatal Denervation in Basal Ganglia. Journal of Neurochemistry, 2002, 73, 344-352.	2.1	47
169	Evidence for a dopaminergic innervation of the pedunculopontine nucleus in monkeys, and its drastic reduction after MPTP intoxication. Journal of Neurochemistry, 2009, 110, 1321-1329.	2.1	47
170	LY293558, an AMPA glutamate receptor antagonist, prevents and reverses levodopa-induced motor alterations in Parkinsonian rats. Synapse, 2001, 42, 40-47.	0.6	46
171	Progressive supranuclear palsy. Neurology, 1991, 41, 1593-1593.	1.5	46
172	Tyrosine kinase B messenger RNA expression in normal human brain and in the substantia nigra of parkinsonian patients: an in situ hybridization study. Neuroscience, 1998, 86, 813-826.	1.1	45
173	Distribution and morphology of nigral axons projecting to the thalamus in primates. Journal of Comparative Neurology, 2002, 447, 249-260.	0.9	45
174	Increased Expression and Redistribution of the Antiapoptotic Molecule Bcl-xL in Parkinson's Disease. Neurobiology of Disease, 2002, 10, 28-32.	2.1	44
175	Ipsilateral and contralateral subthalamic activity after unilateral dopaminergic lesion. NeuroReport, 2000, 11, 3275-3278.	0.6	43
176	Sleep Disorders in Parkinsonian Macaques: Effects of L-Dopa Treatment and Pedunculopontine Nucleus Lesion. Journal of Neuroscience, 2014, 34, 9124-9133.	1.7	43
177	Autoradiographic localization and density of [125l]ferrotransferrin binding sites in the basal ganglia of control subjects, patients with Parkinson's disease and MPTP-lesioned monkeys. Brain Research, 1995, 691, 115-124.	1.1	42
178	Effects of l-DOPA-therapy on dopamine D2 receptor mRNA expression in the striatum of MPTP-intoxicated parkinsonian monkeys. Molecular Brain Research, 1996, 42, 149-155.	2.5	42
179	Distribution of semaphorin IV in adult human brain. Brain Research, 1999, 823, 67-79.	1.1	42
180	Mitochondrial free calcium levels (Rhod-2 fluorescence) and ultrastructural alterations in neuronally differentiated PC12 cells during ceramide-dependent cell death. Journal of Comparative Neurology, 2000, 426, 297-315.	0.9	42

#	Article	IF	CITATIONS
181	Nicotine, but not cotinine, partially protects dopaminergic neurons against MPTP-induced degeneration in mice. Brain Research, 2001, 890, 347-350.	1.1	42
182	Role of activity-dependent mechanisms in the control of dopaminergic neuron survival. Journal of Neurochemistry, 2007, 101, 289-297.	2.1	42
183	Dysfunction of the subthalamic nucleus induces behavioral and movement disorders in monkeys. Movement Disorders, 2009, 24, 1183-1192.	2.2	42
184	Cloning of Rat Parkin cDNA and Distribution of Parkin in Rat Brain. Journal of Neurochemistry, 2002, 74, 1773-1776.	2.1	41
185	Quantitative analysis of dopaminergic loss in relation to functional territories in MPTP-treated monkeys. European Journal of Neuroscience, 2003, 18, 2082-2086.	1.2	41
186	New Species of Human Tyrosine Hydroxylase mRNA Are Produced in Variable Amounts in Adrenal Medulla and Are Overexpressed in Progressive Supranuclear Palsy. Journal of Neurochemistry, 1996, 67, 19-25.	2.1	40
187	Neuronal Localization of Copper-Zinc Superoxide Dismutase Protein and mRNA within the Human Hippocampus from Control and Alzheimer'S Disease Brains. Free Radical Research Communications, 1991, 13, 571-580.	1.8	39
188	Substance P, Neurokinins A and B, and Synthetic Tachykinin Peptides Protect Mesencephalic Dopaminergic Neurons in Culture via an Activity-Dependent Mechanism. Molecular Pharmacology, 2005, 68, 1214-1224.	1.0	38
189	Clinical and pathological features in hydrocarbon-induced Parkinsonism. Annals of Neurology, 1996, 40, 922-925.	2.8	37
190	The inflammatory response in the Parkinson brain. Clinical Neuroscience Research, 2001, 1, 434-443.	0.8	37
191	Impairment of contextâ€adapted movement selection in a primate model of presymptomatic Parkinson's disease. Brain, 2003, 126, 1392-1408.	3.7	37
192	Trk Neurotrophin Receptors in Cholinergic Neurons of Patients with Alzheimer's Disease. Dementia and Geriatric Cognitive Disorders, 1997, 8, 1-8.	0.7	36
193	Role of pedunculopontine cholinergic neurons in the vulnerability of nigral dopaminergic neurons in Parkinson's disease. Experimental Neurology, 2016, 275, 209-219.	2.0	36
194	Dysfunction of mitochondrial Lon protease and identification of oxidized protein in mouse brain following exposure to MPTP: Implications for Parkinson disease. Free Radical Biology and Medicine, 2017, 108, 236-246.	1.3	36
195	Preferential expression of superoxide dismutase messenger RNA in melanized neurons in human mesencephalon. Neuroscience, 1993, 55, 167-175.	1.1	35
196	Role of pontine nuclei damage in smooth pursuit impairment of progressive supranuclear palsy. Neurology, 1994, 44, 716-716.	1.5	35
197	Regional distribution of monoamine vesicular uptake sites in the mesencephalon of control subjects and patients with Parkinson's disease: a postmortem study using tritiated tetrabenazine. Brain Research, 1995, 692, 233-243.	1.1	35
198	Effect of subthalamic nucleus or entopeduncular nucleus lesion on levodopa-induced neurochemical changes within the basal ganglia and on levodopa-induced motor alterations in 6-hydroxydopamine-lesioned rats. Journal of Neurochemistry, 2003, 86, 1328-1337.	2.1	35

#	Article	IF	Citations
199	Blood vessels and Parkinsonism. Frontiers in Bioscience - Landmark, 2004, 9, 277.	3.0	34
200	Iron transport in Parkinson's disease. Parkinsonism and Related Disorders, 2009, 15, S209-S211.	1.1	34
201	Motor neuron disease, parkinsonism and dementia. Acta Neuropathologica, 1987, 75, 104-108.	3.9	33
202	Monoamine vesicular uptake sites in patients with Parkinson's disease and Alzheimer's disease, as measured by tritiated dihydrotetrabenazine autoradiography. Brain Research, 1994, 659, 1-9.	1.1	33
203	Plasticity of nerve afferents to nigrostriatal neurons in parkinson's disease. Annals of Neurology, 1995, 37, 265-272.	2.8	33
204	Heat shock protein 60: an endogenous inducer of dopaminergic cell death in Parkinson disease. Journal of Neuroinflammation, 2014, 11, 86.	3.1	33
205	The noble gas xenon provides protection and trophic stimulation to midbrain dopamine neurons. Journal of Neurochemistry, 2017, 142, 14-28.	2.1	33
206	Seven Solutions for Neuroprotection in Parkinson's Disease. Movement Disorders, 2021, 36, 306-316.	2.2	33
207	Mechanism and consequences of nerve cell death in Parkinson's disease. Journal of Neural Transmission Supplementum, 1999, 56, 127-137.	0.5	31
208	Proliferation of microglial cells induced by 1-methyl-4-phenylpyridinium in mesencephalic cultures results from an astrocyte-dependent mechanism: role of granulocyte macrophage colony-stimulating factor. Journal of Neurochemistry, 2005, 95, 1069-1077.	2.1	31
209	Alzheimer's disease: Is the decrease of the cholinergic innervation of the hippocampus related to intrinsic hippocampal pathology?. Neuroscience, 1992, 47, 843-851.	1.1	30
210	Catecholaminergic systems in the medulla oblongata in parkinsonian syndromes. Neurology, 1990, 40, 1739-1739.	1.5	30
211	Dopaminergic innervation of the pallidum in the normal state, in MPTPâ€treated monkeys and in parkinsonian patients. European Journal of Neuroscience, 2000, 12, 4525-4535.	1.2	29
212	Expression of tachykinin NK2 receptor mRNA in human brain. Neuroscience Letters, 2001, 303, 25-28.	1.0	29
213	Ultrastructural localization of parkin in the rat brainstem, thalamus and basal ganglia. Journal of Neural Transmission, 2004, 111, 1209-1218.	1.4	29
214	Neuromelanin Accumulation with Age in Catecholaminergic Neurons from <i>Macaca fascicularis </i> Prainstem. Developmental Neuroscience, 1993, 15, 37-48.	1.0	28
215	Levodopa but not ropinirole induces an internalization of D1 dopamine receptors in parkinsonian rats. Movement Disorders, 2002, 17, 1174-1179.	2.2	28
216	Localization of copper-zinc superoxide dismutase mRNA in human hippocampus by in situ hybridization. Neuroscience Letters, 1989, 105, 41-46.	1.0	27

#	Article	IF	CITATIONS
217	Changes in GAD67 mRNA expression evidenced by in situ hybridization in the brain of R6/2 transgenic mice. Journal of Neurochemistry, 2003, 86, 1369-1378.	2.1	27
218	Disruption of self-organized actions in monkeys with progressive MPTP-induced parkinsonism: II. Effects of reward preference. European Journal of Neuroscience, 2004, 19, 437-446.	1.2	27
219	Xenon-mediated neuroprotection in response to sustained, low-level excitotoxic stress. Cell Death Discovery, 2016, 2, 16018.	2.0	27
220	Age-related changes of neuronal counts in the human pedunculopontine nucleus. Neuroscience Letters, 2000, 288, 195-198.	1.0	26
221	Cellular Quantification of Tyrosine Hydroxylase in the Rat Brain by Immunoautoradiography. Journal of Neurochemistry, 1993, 61, 617-626.	2.1	26
222	Effect of melatonin on sleep disorders in a monkey model of Parkinson's disease. Sleep Medicine, 2015, 16, 1245-1251.	0.8	26
223	Long-term outcome in neuroZika. Neurology, 2019, 92, e2406-e2420.	1.5	26
224	Microtopography of d1 dopaminergic binding sites in the human substantia nigra: An autoradiographic study. Neuroscience, 1990, 37, 387-398.	1.1	25
225	Striatal expression of substance P and methionin-enkephalin genes in patients with Parkinson's disease. Neuroscience Letters, 1995, 199, 220-224.	1.0	25
226	Disruption of self-organized actions in monkeys with progressive MPTP-induced parkinsonism. I. Effects of task complexity. European Journal of Neuroscience, 2004, 19, 426-436.	1.2	25
227	Probenecid potentiates <scp>MPTP</scp> / <scp>MPP</scp> ⁺ toxicity by interference with cellular energy metabolism. Journal of Neurochemistry, 2013, 127, 782-792.	2.1	25
228	Choline acetyltransferase mRNA expression in the striatal neurons of patients with Alzheimer's disease. Neuroscience Letters, 1997, 225, 169-172.	1.0	24
229	Sparing of orexinâ€ <scp>A</scp> and orexinâ€ <scp>B</scp> neurons in the hypothalamus and of orexin fibers in the substantia nigra of 1â€methylâ€4â€phenylâ€1,2,3,6â€tetrahydropyridineâ€treated macaques. Europe Journal of Neuroscience, 2015, 41, 129-136.	e a r 2	24
230	Tyrosine hydroxylase gene expression in human ventral mesencephalon: Detection of tyrosine hydroxylase messenger RNA in neurites. Journal of Neuroscience Research, 1990, 25, 569-575.	1.3	23
231	Compartmental ordering of cholinergic innervation in the mediodorsal nucleus of the thalamus in human brain. Brain Research, 1990, 515, 117-125.	1.1	23
232	The indirect basal ganglia pathway in dopamine D2 receptor-deficient mice. Neuroscience, 2000, 99, 643-650.	1.1	23
233	Donepezil induces a cholinergic sprouting in basocortical degeneration. Journal of Neurochemistry, 2007, 102, 434-440.	2.1	23
234	K _{ATP} channel blockade protects midbrain dopamine neurons by repressing a gliaâ€toâ€neuron signaling cascade that ultimately disrupts mitochondrial calcium homeostasis. Journal of Neurochemistry, 2010, 114, 553-564.	2.1	23

#	Article	IF	CITATIONS
235	Glucocerebrosidase deficiency and mitochondrial impairment in experimental Parkinson disease. Journal of the Neurological Sciences, 2015, 356, 129-136.	0.3	23
236	Expression of catalytic trkB gene in the striatum and the basal forebrain of patients with Alzheimer's disease: an in situ hybridization study. Neuroscience Letters, 1997, 221, 141-144.	1.0	22
237	AMPA receptor antagonist LY293558 reverses preproenkephalin mRNA overexpression in the striatum of 6-OHDA-lesioned-rats treated withl-dopa. European Journal of Neuroscience, 2002, 16, 2236-2240.	1.2	22
238	How to improve neuroprotection in Parkinson's disease?. Parkinsonism and Related Disorders, 2007, 13, S332-S335.	1.1	22
239	Internal pallidum and substantia nigra control different parts of the mesopontine reticular formation in primate. Movement Disorders, 2011, 26, 1648-1656.	2.2	22
240	Cholinergic neuronal loss in the globus pallidus of Alzheimer disease patients. Neuroscience Letters, 1991, 123, 152-155.	1.0	21
241	Regional vulnerability of mesencephalic dopaminergic neurons prone to degenerate in Parkinson's disease: A post-mortem study in human control subjects. Neurobiology of Disease, 2006, 23, 409-421.	2.1	21
242	S29434, a Quinone Reductase 2 Inhibitor: Main Biochemical and Cellular Characterization. Molecular Pharmacology, 2019, 95, 269-285.	1.0	21
243	Differential vulnerability to 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine of dopaminergic and cholinergic neurons in the monkey mesopontine tegmentum. Brain Research, 1993, 624, 281-285.	1.1	20
244	Animal models in neurodegenerative diseases. , 2007, , 87-90.		20
245	Calpastatin immunoreactivity in the monkey and human brain of control subjects and patients with Parkinson's disease., 2000, 419, 175-192.		19
246	Is Differential Regulation of Mitochondrial Transcripts in Parkinson's Disease Related to Apoptosis?. Journal of Neurochemistry, 1997, 68, 2098-2110.	2.1	19
247	Neuroprotective and neurorestorative potential of xenon. Cell Death and Disease, 2016, 7, e2182-e2182.	2.7	19
248	Neurotrophin receptors and selective loss of cholinergic neurons in Alzheimer disease. Molecular and Chemical Neuropathology, 1996, 28, 219-223.	1.0	18
249	Experimental evidence for a toxic etiology of tropical parkinsonism. Movement Disorders, 2005, 20, 118-119.	2.2	18
250	Striatal Expression of Glutamic Acid Decarboxylase Gene in Alzheimer's Disease. Journal of Neurochemistry, 2002, 71, 767-774.	2.1	16
251	Parafascicular nucleus projection to the extrastriatal basal ganglia in monkeys. NeuroReport, 2006, 17, 277-280.	0.6	16
252	monoclonal antibodies raised against Lewy bodies in brains from subjects with Parkinson's disease. Brain Research, 1985, 345, 374-378.	1.1	15

#	Article	IF	CITATIONS
253	Tumor Necrosis Factor-Like Weak Inducer of Apoptosis Induces Astrocyte Proliferation through the Activation of Transforming-Growth Factor-α/Epidermal Growth Factor Receptor Signaling Pathway. Molecular Pharmacology, 2012, 82, 948-957.	1.0	15
254	The Sleep-Modulating Peptide Orexin-B Protects Midbrain Dopamine Neurons from Degeneration, Alone or in Cooperation with Nicotine. Molecular Pharmacology, 2015, 87, 525-532.	1.0	15
255	Piperazine derivatives as iron chelators: a potential application in neurobiology. BioMetals, 2015, 28, 1043-1061.	1.8	15
256	Expression of Trk Isoforms in Brain Regions and in the Striatum of Patients with Alzheimer's Disease. Experimental Neurology, 2000, 165, 285-294.	2.0	14
257	In situ hybridization of GAD mRNA in monkey and human brain: quantification at both regional and cellular levels. Neuroscience Letters, 1993, 157, 57-61.	1.0	12
258	Plasticity of afferent fibers to striatal neurons bearing D1 dopamine receptors in Parkinson's disease. Movement Disorders, 2001, 16, 435-441.	2.2	12
259	Gangliosides and parkinsonism. Neurology, 1993, 43, 2132-2132.	1.5	12
260	Loss of striatal high affinity NGF binding sites in progressive supranuclear palsy but not in Parkinson's disease. Neuroscience Letters, 1994, 182, 59-62.	1.0	11
261	Metabolic changes in the basal ganglia of patients with Huntington's disease: an insitu hybridization study of cytochrome oxidase subunitl mRNA. Journal of Neurochemistry, 2002, 80, 466-476.	2.1	11
262	DAP12 and CD11b contribute to the microglial-induced death of dopaminergic neurons in vitro but not in vivo in the MPTP mouse model of Parkinson's disease. Journal of Neuroinflammation, 2013, 10, 82.	3.1	11
263	Dopaminergic innervation of the pallidum in the normal state, in MPTP-treated monkeys and in parkinsonian patients. European Journal of Neuroscience, 2000, 12, 4525-4535.	1.2	10
264	Low affinity nerve growth factor receptor, adrenal transplant and Parkinson's disease. Journal of the Neurological Sciences, 1993, 120, 33-37.	0.3	9
265	Regional and cellular presenilin 2 (STM2) gene expression in the human brain. NeuroReport, 1996, 7, 2021-2025.	0.6	9
266	Dopaminergic Neurons Reduced to Silence by Oxidative Stress: An Early Step in the Death Cascade in Parkinson's Disease?. Science Signaling, 2006, 2006, pe19-pe19.	1.6	9
267	Quantitative evaluation of the human subventricular zone. Brain, 2012, 135, e221-e221.	3.7	9
268	Aging of the dopaminergic system and motor behavior in mice intoxicated with the parkinsonian toxin 1â€methylâ€4â€phenylâ€1,2,3,6â€ŧetrahydropyridine. Journal of Neurochemistry, 2012, 122, 1032-1046.	2.1	9
269	MFGE8 does not orchestrate clearance of apoptotic neurons in a mouse model of Parkinson's disease. Neurobiology of Disease, 2013, 51, 192-201.	2.1	9
270	In search of innovative therapeutics for neuropsychiatric disorders: The case of neurodegenerative diseases. Annales Pharmaceutiques Francaises, 2015, 73, 3-12.	0.4	9

#	Article	IF	CITATIONS
271	Tyrosine hydroxylase-like immunoreactivity in senile plaques is not related to the density of tyrosine hydroxylase-positive fibers in patients with Alzheimer's disease. Neuroscience Letters, 1990, 110, 210-215.	1.0	8
272	Neuroprotection of dopamine neurons by xenon against low-level excitotoxic insults is not reproduced by other noble gases. Journal of Neural Transmission, 2020, 127, 27-34.	1.4	8
273	Glutaredoxin 1 Downregulation in the Substantia Nigra Leads to Dopaminergic Degeneration in Mice. Movement Disorders, 2020, 35, 1843-1853.	2.2	8
274	[125I]EGF Binding in Basal Ganglia of Patients with Parkinson's Disease and Progressive Supranuclear Palsy and in MPTP-Treated Monkeys. Experimental Neurology, 1998, 154, 146-156.	2.0	7
275	Characterization of two antigens in parkinsonian Lewy bodies. Brain Research, 1988, 441, 139-144.	1.1	6
276	CD95 (APO-1/Fas) and Parkinson's disease. Annals of Neurology, 1998, 44, 425-425.	2.8	6
277	Increased mRNA expression of cytochrome oxidase in dorsal raphe nucleus of depressive suicide victims. Neuropsychiatric Disease and Treatment, 2008, 4, 413.	1.0	6
278	Granulocyte colony-stimulating factor is not protective against selective dopaminergic cell death in vitro. Neuroscience Letters, 2005, 383, 44-48.	1.0	5
279	Brain somatostatin concentrations do not decrease in progressive supranuclear palsy Journal of Neurology, Neurosurgery and Psychiatry, 1987, 50, 1526-1528.	0.9	4
280	Adrenal transplant, dopaminergic neurons, and Parkinson' disease. Annals of Neurology, 1993, 33, 662-663.	2.8	4
281	Autoradiographic study of [125lepidermal growth factor-binding sites in the mesencephalon of control and parkinsonian brains post-mortem. Brain Research, 1993, 628, 72-76.	1.1	4
282	Neuronal plasticity and Parkinson disease. Molecular and Chemical Neuropathology, 1995, 24, 251-255.	1.0	4
283	Editorial. Journal of Neural Transmission, 2010, 117, 897-898.	1.4	3
284	The Global Fight Against Dementia. Science Translational Medicine, 2014, 6, 267ed22.	5.8	3
285	Blood Vessels And Neurodegeneration In Parkinson's Disease. Advances in Behavioral Biology, 2002, , 341-347.	0.2	2
286	Journal of Neural Transmission: a scientific journal devoted since 1950 to the translation of neuroscience into clinical practice. Journal of Neural Transmission, 2019, 126, 359-365.	1.4	2
287	Inflammatory Changes and Apoptosis in Parkinson's Disease. Advances in Behavioral Biology, 2002, , 259-263.	0.2	2
288	Levodopa induces a cytoplasmic localization of D1 dopamine receptors in striatal neurons in Parkinson's disease. Annals of Neurology, 2000, 47, 136-136.	2.8	1

#	Article	IF	CITATIONS
289	Localization of D1a dopamine receptors on cell bodies and axonal endings in the substantia nigra pars reticulata of the rat. Journal of Neural Transmission, 2007, 114, 1509-1517.	1.4	1
290	Futures pistes thÃ@rapeutiques mÃ@dicamenteuses pour la maladie de Parkinson. Bulletin De L'Academie Nationale De Medecine, 2012, 196, 1369-1379.	0.0	1
291	Cholinergic Systems in Alzheimer's Disease, Parkinson's Disease and Progressive Supranuclear Palsy. Advances in Behavioral Biology, 1990, , 427-444.	0.2	1
292	Hippocampal and Parahippocampal Somatostatin 28 and Neuropeptide Y Containing Neurons in Alzheimer's Disease (Part 1 of 2). Dementia and Geriatric Cognitive Disorders, 1992, 3, 282-289.	0.7	0
293	Preface ? Special Issue: A Tribute for Prof. Dr. Melvin D. Yahr, M.D. (1917?2004). Journal of Neural Transmission, 2004, 111, 1205-1208.	1.4	O
294	Dissociated mesencephalic cultures. , 2008, , 389-408.		0
295	Introducing "High Impact Reviews― Journal of Neural Transmission, 2016, 123, 553-553.	1.4	O
296	Anatomo-Chemical Organization of the Basal Ganglia Circuitry in the Normal and Parkinsonian States. Advances in Behavioral Biology, 2002, , 521-530.	0.2	0
297	Contextual Analysis for Both Light and Electronic Microscopy Applications. , 1992, , .		О
298	Localization and Density of Transferrin Binding Sites in the Nigrostriatal System of Control Subjects and Patients with Parkinson's Disease. Advances in Behavioral Biology, 1995, , 239-244.	0.2	0
299	Special issue in honor of Peter Riederer at the occasion of his 80th birthday. Journal of Neural Transmission, 2022, , .	1.4	O