
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9490447/publications.pdf Version: 2024-02-01

ANDREL IVANOV

#	Article	IF	CITATIONS
1	The enigmatic roles of epithelial gasdermin B: Recent discoveries and controversies. Trends in Cell Biology, 2023, 33, 48-59.	7.9	17
2	GSDMB is increased in IBD and regulates epithelial restitution/repair independent of pyroptosis. Cell, 2022, 185, 283-298.e17.	28.9	86
3	Lymphocyte cytosolic protein 1 (L-plastin) I232F mutation impairs granulocytic proliferation and causes neutropenia. Blood Advances, 2022, 6, 2581-2594.	5.2	5
4	A myosin chaperone, UNCâ€45A, is a novel regulator of intestinal epithelial barrier integrity and repair. FASEB Journal, 2022, 36, e22290.	0.5	8
5	P-Cadherin Regulates Intestinal Epithelial Cell Migration and Mucosal Repair, but Is Dispensable for Colitis Associated Colon Cancer. Cells, 2022, 11, 1467.	4.1	6
6	Unique and redundant functions of cytoplasmic actins and nonmuscle myosin II isoforms at epithelial junctions. Annals of the New York Academy of Sciences, 2022, 1515, 61-74.	3.8	8
7	Actin cytoskeleton dynamics during mucosal inflammation: a view from broken epithelial barriers. Current Opinion in Physiology, 2021, 19, 10-16.	1.8	24
8	Novel Functions of the Septin Cytoskeleton. American Journal of Pathology, 2021, 191, 40-51.	3.8	18
9	Anillin is an emerging regulator of tumorigenesis, acting as a cortical cytoskeletal scaffold and a nuclear modulator of cancer cell differentiation. Cellular and Molecular Life Sciences, 2021, 78, 621-633.	5.4	26
10	Myosin Motors: Novel Regulators and Therapeutic Targets in Colorectal Cancer. Cancers, 2021, 13, 741.	3.7	15
11	Anillin regulates breast cancer cell migration, growth, and metastasis by non-canonical mechanisms involving control of cell stemness and differentiation. Breast Cancer Research, 2020, 22, 3.	5.0	33
12	A Septin Cytoskeleton-Targeting Small Molecule, Forchlorfenuron, Inhibits Epithelial Migration via Septin-Independent Perturbation of Cellular Signaling. Cells, 2020, 9, 84.	4.1	12
13	Adducins inhibit lung cancer cell migration through mechanisms involving regulation of cell-matrix adhesion and cadherin-11 expression. Biochimica Et Biophysica Acta - Molecular Cell Research, 2019, 1866, 395-408.	4.1	27
14	A membrane fusion protein, Ykt6, regulates epithelial cell migration via microRNA-mediated suppression of Junctional Adhesion Molecule A. Cell Cycle, 2018, 17, 1812-1831.	2.6	13
15	A vesicle trafficking protein αSNAP regulates Paneth cell differentiation inÂvivo. Biochemical and Biophysical Research Communications, 2017, 486, 951-957.	2.1	7
16	Disruption of the epithelial barrier during intestinal inflammation: Quest for new molecules and mechanisms. Biochimica Et Biophysica Acta - Molecular Cell Research, 2017, 1864, 1183-1194.	4.1	179
17	cAMP-dependent activation of protein kinase A attenuates respiratory syncytial virus-induced human airway epithelial barrier disruption. PLoS ONE, 2017, 12, e0181876.	2.5	31
18	Nonmuscle Myosin IIA Regulates Intestinal Epithelial Barrier in vivo and Plays a Protective Role During Experimental Colitis. Scientific Reports, 2016, 6, 24161.	3.3	67

#	Article	IF	CITATIONS
19	Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy, 2016, 12, 1-222.	9.1	4,701
20	Actin-Depolymerizing Factor and Cofilin-1 Have Unique and Overlapping Functions in Regulating Intestinal Epithelial Junctions and Mucosal Inflammation. American Journal of Pathology, 2016, 186, 844-858.	3.8	38
21	Actin-interacting protein 1 controls assembly and permeability of intestinal epithelial apical junctions. American Journal of Physiology - Renal Physiology, 2015, 308, G745-G756.	3.4	23
22	F-actin binding protein, anillin, regulates integrity of intercellular junctions in human epithelial cells. Cellular and Molecular Life Sciences, 2015, 72, 3185-3200.	5.4	46
23	Fâ€actin Binding Protein, Anillin, Regulates Integrity of Intercellular Junctions in Human Epithelial Cells. FASEB Journal, 2015, 29, 282.7.	0.5	0
24	Tissue Barriers: Introducing an exciting new journal. Temperature, 2014, 1, 151-153.	3.0	1
25	N-Ethylmaleimide-sensitive Factor Attachment Protein α (αSNAP) Regulates Matrix Adhesion and Integrin Processing in Human Epithelial Cells. Journal of Biological Chemistry, 2014, 289, 2424-2439.	3.4	16
26	Loss of Î ³ -cytoplasmic actin triggers myofibroblast transition of human epithelial cells. Molecular Biology of the Cell, 2014, 25, 3133-3146.	2.1	35
27	Pharmacological Inhibitors of Exocytosis and Endocytosis: Novel Bullets for Old Targets. Methods in Molecular Biology, 2014, 1174, 3-18.	0.9	34
28	Novel mechanism of cytokine-induced disruption of epithelial barriers. Tissue Barriers, 2013, 1, e25231.	3.2	29
29	Sustained Protein Kinase D Activation Mediates Respiratory Syncytial Virus-Induced Airway Barrier Disruption. Journal of Virology, 2013, 87, 11088-11095.	3.4	77
30	αSNAP controls β1â€integrin trafficking and FAK/Src dependent cellâ€matrix adhesions in human epithelial cells. FASEB Journal, 2013, 27, 132.5.	0.5	0
31	An <i>MBoC</i> Favorite: Cell contact–dependent regulation of epithelial–myofibroblast transition via the Rho-Rho-kinase-phospho-myosin pathway. Molecular Biology of the Cell, 2012, 23, 2621-2621.	2.1	0
32	Nonredundant roles of cytoplasmic β- and γ-actin isoforms in regulation of epithelial apical junctions. Molecular Biology of the Cell, 2012, 23, 3542-3553.	2.1	66
33	Loss of a membrane trafficking protein αSNAP induces non-canonical autophagy in human epithelia. Cell Cycle, 2012, 11, 4613-4625.	2.6	42
34	A Membrane Fusion Protein αSNAP Is a Novel Regulator of Epithelial Apical Junctions. PLoS ONE, 2012, 7, e34320.	2.5	29
35	Loss of α SNAP induces colonic epithelial cell apoptosis via downâ€regulation of Bclâ€2 expression and fragmentation of the Golgi. FASEB Journal, 2012, 26, 655.9.	0.5	0
36	Spectrin-adducin membrane skeleton. Bioarchitecture, 2011, 1, 186-191.	1.5	23

3

#	Article	IF	CITATIONS
37	α‧NAP is a novel regulator of apical junctions and apoptosis in model epithelia. FASEB Journal, 2011, 25, 242.6.	0.5	0
38	Adducins Regulate Remodeling of Apical Junctions in Human Epithelial Cells. Molecular Biology of the Cell, 2010, 21, 3506-3517.	2.1	75
39	Tumor Suppressor Scribble Regulates Assembly of Tight Junctions in the Intestinal Epithelium. American Journal of Pathology, 2010, 176, 134-145.	3.8	66
40	Cytoskeletal Regulation of Epithelial Barrier Function During Inflammation. American Journal of Pathology, 2010, 177, 512-524.	3.8	304
41	Adducins regulate remodeling of intercellular junctions in model human epithelia. FASEB Journal, 2010, 24, 348.3.	0.5	Ο
42	Protein kinase C activation disrupts epithelial apical junctions via ROCK-II dependent stimulation of actomyosin contractility. BMC Cell Biology, 2009, 10, 36.	3.0	49
43	Non-Muscle Myosin IIA Differentially Regulates Intestinal Epithelial Cell Restitution and Matrix Invasion. American Journal of Pathology, 2009, 174, 436-448.	3.8	48
44	Câ€Jun Nâ€ŧerminal kinase is involved in disassembly of apical junctions in model intestinal epithelia. FASEB Journal, 2009, 23, 121.3.	0.5	0
45	Myosin II regulates the shape of three-dimensional intestinal epithelial cysts. Journal of Cell Science, 2008, 121, 1803-1814.	2.0	49
46	Cis-Dimerization Mediates Function of Junctional Adhesion Molecule A. Molecular Biology of the Cell, 2008, 19, 1862-1872.	2.1	63
47	The Epithelium in Inflammatory Bowel Disease: Potential Role of Endocytosis of Junctional Proteins in Barrier Disruption. Novartis Foundation Symposium, 2008, , 115-132.	1.1	66
48	Actin motors that drive formation and disassembly of epithelial apical junctions. Frontiers in Bioscience - Landmark, 2008, Volume, 6662.	3.0	90
49	A Unique Role for Nonmuscle Myosin Heavy Chain IIA in Regulation of Epithelial Apical Junctions. PLoS ONE, 2007, 2, e658.	2.5	142
50	A unique role for the nonmuscle myosin IIA in regulation of epithelial apical junctions. FASEB Journal, 2007, 21, A763.	0.5	0
51	Microtubules regulate disassembly of epithelial apical junctions. BMC Cell Biology, 2006, 7, 12.	3.0	75
52	Endocytosis of the apical junctional complex: mechanisms and possible roles in regulation of epithelial barriers. BioEssays, 2005, 27, 356-365.	2.5	143
53	Differential Roles for Actin Polymerization and a Myosin II Motor in Assembly of the Epithelial Apical Junctional Complex. Molecular Biology of the Cell, 2005, 16, 2636-2650.	2.1	208
54	Endocytosis of Epithelial Apical Junctional Proteins by a Clathrin-mediated Pathway into a Unique Storage Compartment. Molecular Biology of the Cell, 2004, 15, 176-188.	2.1	350

#	Article	IF	CITATIONS
55	Role for Actin Filament Turnover and a Myosin II Motor in Cytoskeleton-driven Disassembly of the Epithelial Apical Junctional Complex. Molecular Biology of the Cell, 2004, 15, 2639-2651.	2.1	193
56	The epithelium in inflammatory bowel disease: potential role of endocytosis of junctional proteins in barrier disruption. Novartis Foundation Symposium, 2004, 263, 115-24; discussion 124-32, 211-8.	1.1	47
57	Expression of genes controlling transport and catabolism of prostaglandin E ₂ in lipopolysaccharide fever. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2003, 284, R698-R706.	1.8	43
58	Chronic liver and renal diseases differently affect structure of human serum albumin. Archives of Biochemistry and Biophysics, 2002, 408, 69-77.	3.0	44
59	Prostaglandin E ₂ -synthesizing enzymes in fever: differential transcriptional regulation. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2002, 283, R1104-R1117.	1.8	130