Cheng Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9490416/publications.pdf

Version: 2024-02-01

32 papers	1,332 citations	17 h-index	395702 33 g-index
36	36	36	1727 citing authors
all docs	docs citations	times ranked	

#	Article	IF	CITATIONS
1	PI3K/Akt signaling in osteosarcoma. Clinica Chimica Acta, 2015, 444, 182-192.	1.1	262
2	MMPs and ADAMTSs in intervertebral disc degeneration. Clinica Chimica Acta, 2015, 448, 238-246.	1.1	150
3	Inc <scp>RNA</scp> s: novel players in intervertebral disc degeneration and osteoarthritis. Cell Proliferation, 2017, 50, e12313.	5 . 3	116
4	Interleukin- $1\hat{l}^2$ in intervertebral disk degeneration. Clinica Chimica Acta, 2015, 450, 262-272.	1.1	111
5	Tumor necrosis factor-α: a key contributor to intervertebral disc degeneration. Acta Biochimica Et Biophysica Sinica, 2017, 49, 1-13.	2.0	90
6	MicroRNAs in osteosarcoma. Clinica Chimica Acta, 2015, 444, 9-17.	1.1	89
7	MicroRNAs: New players in intervertebral disc degeneration. Clinica Chimica Acta, 2015, 450, 333-341.	1.1	75
8	MiR-21 promotes ECM degradation through inhibiting autophagy via the PTEN/akt/mTOR signaling pathway in human degenerated NP cells. Biomedicine and Pharmacotherapy, 2018, 99, 725-734.	5 . 6	65
9	Autophagy: A double-edged sword in intervertebral disk degeneration. Clinica Chimica Acta, 2016, 457, 27-35.	1.1	55
10	MiR-210 facilitates ECM degradation by suppressing autophagy via silencing of ATG7 in human degenerated NP cells. Biomedicine and Pharmacotherapy, 2017, 93, 470-479.	5.6	45
11	Factor-induced Reprogramming and Zinc Finger Nuclease-aided Gene Targeting Cause Different Genome Instability in β-Thalassemia Induced Pluripotent Stem Cells (iPSCs). Journal of Biological Chemistry, 2015, 290, 12079-12089.	3.4	31
12	<p>KRT17 Functions as a Tumor Promoter and Regulates Proliferation, Migration and Invasion in Pancreatic Cancer via mTOR/S6k1 Pathway</p> . Cancer Management and Research, 2020, Volume 12, 2087-2095.	1.9	27
13	DPP4 Inhibitor Attenuates Severe Acute Pancreatitis-Associated Intestinal Inflammation via Nrf2 Signaling. Oxidative Medicine and Cellular Longevity, 2019, 2019, 1-11.	4.0	26
14	Fisetin inhibits the proliferation, migration and invasion of pancreatic cancer by targeting PI3K/AKT/mTOR signaling. Aging, 2021, 13, 24753-24767.	3.1	25
15	Chemopreventive effect of Betulinic acid via mTOR -Caspases/Bcl2/Bax apoptotic signaling in pancreatic cancer. BMC Complementary Medicine and Therapies, 2020, 20, 178.	2.7	23
16	Periplocin inhibits the growth of pancreatic cancer by inducing apoptosis via AMPKâ€mTOR signaling. Cancer Medicine, 2021, 10, 325-336.	2.8	19
17	Construction of a genomeâ€scale metabolic network of the plant pathogen <i>Pectobacterium carotovorum</i> provides new strategies for bactericide discovery. FEBS Letters, 2015, 589, 285-294.	2.8	18
18	Baohuoside-1 targeting mTOR inducing apoptsis to inhibit hepatocellular carcinoma proliferation, invasion and migration. Biomedicine and Pharmacotherapy, 2020, 128, 110366.	5 . 6	14

#	Article	IF	CITATIONS
19	Research progress on the biological modifications of implant materials in 3D printed intervertebral fusion cages. Journal of Materials Science: Materials in Medicine, 2022, 33, 2.	3.6	13
20	Effects of sildenafil on inflammatory injury of the lung in sodium taurocholate-induced severe acute pancreatitis rats. International Immunopharmacology, 2020, 80, 106151.	3.8	12
21	Coexpression of HHLA2 and PD-L1 on Tumor Cells Independently Predicts the Survival of Spinal Chordoma Patients. Frontiers in Immunology, 2021, 12, 797407.	4.8	9
22	Construction and analysis of a genome-scale metabolic network for Bacillus licheniformis WX-02. Research in Microbiology, 2016, 167, 282-289.	2.1	8
23	Early and Midterm Outcomes of Surgical Correction for Severe Dystrophic Cervical Kyphosis in Patients with Neurofibromatosis Type 1: A Retrospective Multicenter Study. World Neurosurgery, 2019, 127, e1190-e1200.	1.3	7
24	Apoptotic Signaling to Inhibit Glioma Cell Growth Provided I via mTOR Apoptotic Signaling to Inhibit Glioma Cell Growth Provided I via mTOR Apoptotic Signaling to Inhibit Glioma Cell Growth Provided I via mTOR Apoptotic Signaling to Inhibit Glioma Cell Growth Provided I via mTOR Apoptotic Signaling to Inhibit Glioma Cell Growth Provided I via mTOR Apoptotic Signaling to Inhibit Glioma Cell Growth Provided I via mTOR Apoptotic Signaling to Inhibit Glioma Cell Growth Provided I via mTOR Apoptotic Signaling to Inhibit Glioma Cell Growth Provided I via mTOR Apoptotic Signaling to Inhibit Glioma Cell Growth Provided I via mTOR Apoptotic Signaling to Inhibit Glioma Cell Growth Provided I via mTOR Apoptotic Signaling to Inhibit Glioma Cell Growth Provided I via mTOR Apoptotic Signaling to Inhibit Glioma Cell Growth Provided I via mTOR Apoptotic Signaling to Inhibit Glioma Cell Growth Provided I via mTOR Apoptotic Signaling to Inhibit Glioma Cell Growth Provided I via mTOR Apoptotic Signaling to Inhibit Glioma Cell Growth Provided I via mTOR Apoptotic Signaling to Inhibit Glioma Cell Growth Provided I via mTOR Apoptotic Signaling to Inhibit Glioma Cell Growth Provided I via mTOR Apoptotic Signaling to Inhibit Glioma Cell Growth Provided I via mTOR Apoptotic Signaling to Inhibit Glioma Cell Growth Provided I via mTOR Apoptotic Signaling to Inhibit Glioma Cell Growth Provided I via mTOR Apoptotic Signaling to Inhibit Glioma Cell Growth Provided I via mTOR Apoptotic Signaling to Inhibit Glioma Cell Growth Provided I via mTOR Apoptotic Signaling to Inhibit Glioma Cell Growth Provided I via mTOR Apoptotic Signaling to Inhibit Glioma Cell Growth Provided I via mTOR Apoptotic Signaling to Inhibit Glioma Cell Growth Provided I via mTOR Apoptotic Signaling to Inhibit Glioma Cell Growth Provided I via mTOR Apoptotic Signaling to Inhibit Glioma Cel	1.9	7
25	MK8722, an AMPK activator, inhibiting carcinoma proliferation, invasion and migration in human pancreatic cancer cells. Biomedicine and Pharmacotherapy, 2021, 144, 112325.	5. 6	7
26	Adipose‑derived mesenchymal stem cells ameliorate dibutyltin dichloride‑induced chronic pancreatitis by inhibiting the PI3K/AKT/mTOR signaling pathway. Molecular Medicine Reports, 2020, 21, 1833-1840.	2.4	7
27	Transcriptome and proteome analysis of the antitumor activity of maslinic acid against pancreatic cancer cells. Aging, 2021, 13, 23308-23327.	3.1	4
28	LncRNA HOTAIR influences cell proliferation via miR-130b/PTEN/AKT axis in IDD. Cell Cycle, 2022, 21, 323-339.	2.6	4
29	Exploring the Mechanism of Skeletal Muscle in a Tacrolimus-Induced Posttransplantation Diabetes Mellitus Model on Gene Expression Profiles. Journal of Diabetes Research, 2020, 2020, 1-11.	2.3	3
30	Role of DNA damage in the progress of chronic tubule‑interstitial injury. Molecular Medicine Reports, 2020, 22, 1081-1089.	2.4	3
31	Radiologic Analysis of Causes of Early Recurrence After Percutaneous Endoscopic Transforaminal Discectomy. Global Spine Journal, 2024, 14, 113-121.	2.3	3
32	A novel rat model of interbody fusion based on anterior lumbar corpectomy and fusion (ALCF). BMC Musculoskeletal Disorders, 2021, 22, 965.	1.9	2