Steve Croft

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9490407/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The Breakthrough Listen Search for Intelligent Life: Technosignature Search of Transiting TESS Targets of Interest. Astronomical Journal, 2022, 163, 104.	4.7	9
2	Setigen: Simulating Radio Technosignatures for the Search for Extraterrestrial Intelligence. Astronomical Journal, 2022, 163, 222.	4.7	5
3	Searching for Broadband Pulsed Beacons from 1883 Stars Using Neural Networks. Astrophysical Journal, 2022, 932, 81.	4.5	8
4	Multiband Detection of Repeating FRB 20180916B. Astrophysical Journal, 2022, 932, 98.	4.5	12
5	The Breakthrough Listen Search for Intelligent Life: Searching for Technosignatures in Observations of TESS Targets of Interest. Astronomical Journal, 2021, 161, 286.	4.7	19
6	The Breakthrough Listen Search For Intelligent Life Near the Galactic Center. I Astronomical Journal, 2021, 162, 33.	4.7	34
7	The Breakthrough Listen Search for Intelligent Life: MeerKAT Target Selection. Publications of the Astronomical Society of the Pacific, 2021, 133, 064502.	3.1	9
8	Absence of Bursts between 4 and 8 GHz from FRB 20200120E Located in an M81 Globular Cluster. Research Notes of the AAS, 2021, 5, 166.	0.7	0
9	Strategies for Maximizing Detection Rate in Radio SETI. Astronomical Journal, 2021, 162, 151.	4.7	6
10	A radio technosignature search towards Proxima Centauri resulting in a signal of interest. Nature Astronomy, 2021, 5, 1148-1152.	10.1	17
11	Analysis of the Breakthrough Listen signal of interest blc1 with a technosignature verification framework. Nature Astronomy, 2021, 5, 1153-1162.	10.1	24
12	One of Everything: The Breakthrough Listen Exotica Catalog. Astrophysical Journal, Supplement Series, 2021, 257, 42.	7.7	8
13	Re-analysis of Breakthrough Listen Observations of FRB 121102: Polarization Properties of Eight New Spectrally Narrow Bursts. Research Notes of the AAS, 2021, 5, 17.	0.7	4
14	The Breakthrough Listen Search for Intelligent Life: Observations of 1327 Nearby Stars Over 1.10–3.45 GHz. Astronomical Journal, 2020, 159, 86.	4.7	69
15	Narrow-band Signal Localization for SETI on Noisy Synthetic Spectrogram Data. Publications of the Astronomical Society of the Pacific, 2020, 132, 114501.	3.1	11
16	Opportunities to search for extraterrestrial intelligence with the FAST. Research in Astronomy and Astrophysics, 2020, 20, 078.	1.7	14
17	Space Telescope and Optical Reverberation Mapping Project. XII. Broad-line Region Modeling of NGC 5548. Astrophysical Journal, 2020, 902, 74.	4.5	22
18	Breakthrough Listen Search for Technosignatures toward the Kepler-160 System. Research Notes of the AAS, 2020, 4, 97.	0.7	5

#	Article	IF	CITATIONS
19	The Breakthrough Listen Search for Intelligent Life: Public Data, Formats, Reduction, and Archiving. Publications of the Astronomical Society of the Pacific, 2019, 131, 124505.	3.1	51
20	Space Telescope and Optical Reverberation Mapping Project. VIII. Time Variability of Emission and Absorption in NGC 5548 Based on Modeling the Ultraviolet Spectrum. Astrophysical Journal, 2019, 881, 153.	4.5	34
21	The Breakthrough Listen Search for Intelligent Life: Searching Boyajian's Star for Laser Line Emission. Publications of the Astronomical Society of the Pacific, 2019, 131, 034202.	3.1	11
22	Towards an all-sky radio telescope for SETI. Astronomy and Geophysics, 2019, 60, 2.22-2.26.	0.2	1
23	<i>Breakthrough Listen</i> follow-up of the reported transient signal observed at the Arecibo Telescope in the direction of Ross 128. International Journal of Astrobiology, 2019, 18, 33-35.	1.6	4
24	Breakthrough Listen Observations of Asteroid (514107) 2015 BZ ₅₀₉ with the Parkes Radio Telescope. Research Notes of the AAS, 2019, 3, 19.	0.7	2
25	Breakthrough Listen Follow-up of the Random Transiter (EPIC 249706694/HD 139139) with the Green Bank Telescope. Research Notes of the AAS, 2019, 3, 147.	0.7	2
26	The Breakthrough Listen Search for Intelligent Life: A Wideband Data Recorder System for the Robert C. Byrd Green Bank Telescope. Publications of the Astronomical Society of the Pacific, 2018, 130, 044502.	3.1	58
27	A Serendipitous MWA Search for Narrowband Signals from â€~Oumuamua. Astrophysical Journal, 2018, 857, 11.	4.5	19
28	A Search for Extraterrestrial Intelligence (SETI) toward the Galactic Anticenter with the Murchison Widefield Array. Astrophysical Journal, 2018, 856, 31.	4.5	16
29	SELF-SUPERVISED ANOMALY DETECTION FOR NARROWBAND SETI. , 2018, , .		4
30	The Breakthrough Listen search for intelligent life: Wide-bandwidth digital instrumentation for the CSIRO Parkes 64-m telescope. Publications of the Astronomical Society of Australia, 2018, 35, .	3.4	17
31	Highest Frequency Detection of FRB 121102 at 4–8 GHz Using the Breakthrough Listen Digital Backend at the Green Bank Telescope. Astrophysical Journal, 2018, 863, 2.	4.5	226
32	Breakthrough Listen Observations of 11/′Oumuamua with the GBT. Research Notes of the AAS, 2018, 2, 9.	0.7	17
33	No Bursts Detected from FRB121102 in Two 5 hr Observing Campaigns with the Robert C. Byrd Green Bank Telescope. Research Notes of the AAS, 2018, 2, 30.	0.7	8
34	ALMA Observations of the Interaction of a Radio Jet with Molecular Gas in Minkowski's Object. Astrophysical Journal, 2017, 838, 146.	4.5	21
35	Space Telescope and Optical Reverberation Mapping Project. V. Optical Spectroscopic Campaign and Emission-line Analysis for NGC 5548. Astrophysical Journal, 2017, 837, 131.	4.5	93
36	Breakthrough Listen – A new search for life in the universe. Acta Astronautica, 2017, 139, 98-101.	3.2	59

#	Article	IF	CITATIONS
37	The <i>Breakthrough Listen</i> Search for Intelligent Life: Target Selection of Nearby Stars and Galaxies. Publications of the Astronomical Society of the Pacific, 2017, 129, 054501.	3.1	95
38	Space Telescope and Optical Reverberation Mapping Project. VII. Understanding the Ultraviolet Anomaly in NGC 5548 with X-Ray Spectroscopy. Astrophysical Journal, 2017, 846, 55.	4.5	33
39	A search for long-time-scale, low-frequency radio transients. Monthly Notices of the Royal Astronomical Society, 2017, 466, 1944-1953.	4.4	30
40	Low-Frequency Spectral Energy Distributions of Radio Pulsars Detected with the Murchison Widefield Array. Publications of the Astronomical Society of Australia, 2017, 34, .	3.4	25
41	The local nanohertz gravitational-wave landscape from supermassive black hole binaries. Nature Astronomy, 2017, 1, 886-892.	10.1	99
42	The Breakthrough Listen Search for Intelligent Life: 1.1–1.9 GHz Observations of 692 Nearby Stars. Astrophysical Journal, 2017, 849, 104.	4.5	108
43	Numerical Simulations of a Jet–Cloud Collision and Starburst: Application to Minkowski's Object. Astrophysical Journal, 2017, 850, 171.	4.5	33
44	TRANSIENT EVENTS IN ARCHIVAL VERY LARGE ARRAY OBSERVATIONS OF THE GALACTIC CENTER. Astrophysical Journal, 2016, 833, 11.	4.5	10
45	SUPPLEMENT: "LOCALIZATION AND BROADBAND FOLLOW-UP OF THE GRAVITATIONAL-WAVE TRANSIENT GW150914―(2016, ApJL, 826, L13). Astrophysical Journal, Supplement Series, 2016, 225, 8.	7.7	44
46	MURCHISON WIDEFIELD ARRAY LIMITS ON RADIO EMISSION FROM ANTARES NEUTRINO EVENTS. Astrophysical Journal Letters, 2016, 820, L24.	8.3	9
47	Time-domain and spectral properties of pulsars at 154ÂMHz. Monthly Notices of the Royal Astronomical Society, 2016, 461, 908-921.	4.4	35
48	A DEEP SEARCH FOR PROMPT RADIO EMISSION FROM THE SHORT GRB 150424A WITH THE MURCHISON WIDEFIELD ARRAY. Astrophysical Journal Letters, 2015, 814, L25.	8.3	37
49	The next phases of SETI@home. Proceedings of SPIE, 2015, , .	0.8	2
50	VAST: An ASKAP Survey for Variables and Slow Transients. Publications of the Astronomical Society of Australia, 2013, 30, .	3.4	88
51	ASGARD: A LARGE SURVEY FOR SLOW GALACTIC RADIO TRANSIENTS. I. OVERVIEW AND FIRST RESULTS. Astrophysical Journal, 2013, 762, 85.	4.5	18
52	THE ALLEN TELESCOPE ARRAY Pi GHz SKY SURVEY. III. THE ELAIS-N1, COMA, AND LOCKMAN HOLE FIELDS. Astrophysical Journal, 2013, 762, 93.	4.5	19
53	Primary Beam and Dish Surface Characterization at the Allen Telescope Array by Radio Holography. IEEE Transactions on Antennas and Propagation, 2011, 59, 2004-2021.	5.1	20
54	THE ALLEN TELESCOPE ARRAY TWENTY-CENTIMETER SURVEY—A 700-SQUARE-DEGREE, MULTI-EPOCH RADIO DATA SET. II. INDIVIDUAL EPOCH TRANSIENT STATISTICS. Astrophysical Journal, 2011, 731, 34.	4.5	34

#	Article	IF	CITATIONS
55	Workshop on Radio Transients. Proceedings of the International Astronomical Union, 2011, 7, 272-272.	0.0	0
56	X-RAY OBSERVATIONS OF RADIO TRANSIENTS WITHOUT OPTICAL HOSTS. Astrophysical Journal, 2011, 740, 87.	4.5	3
57	SPECTROPOLARIMETRY WITH THE ALLEN TELESCOPE ARRAY: FARADAY ROTATION TOWARD BRIGHT POLARIZED RADIO GALAXIES. Astrophysical Journal, 2011, 728, 57.	4.5	30
58	THE ALLEN TELESCOPE ARRAY PI GHz SKY SURVEY II. DAILY AND MONTHLY MONITORING FOR TRANSIENTS AND VARIABILITY IN THE BO×TES FIELD. Astrophysical Journal, 2011, 739, 76.	4.5	19
59	THE ALLEN TELESCOPE ARRAY PI GHz SKY SURVEY. I. SURVEY DESCRIPTION AND STATIC CATALOG RESULTS FOR THE BOA–TES FIELD. Astrophysical Journal, 2010, 725, 1792-1804.	4.5	28
60	THE ALLEN TELESCOPE ARRAY TWENTY-CENTIMETER SURVEY—A 690 DEG ² , 12 EPOCH RADIO DATA SET. I. CATALOG AND LONG-DURATION TRANSIENT STATISTICS. Astrophysical Journal, 2010, 719, 45-58.	4.5	50
61	MID-INFRARED VARIABILITY FROM THE <i>SPITZER</i> DEEP WIDE-FIELD SURVEY. Astrophysical Journal, 2010, 716, 530-543.	4.5	46
62	The TexOx-1000 redshift survey of radio sources I: the TOOT00 region. Monthly Notices of the Royal Astronomical Society, 2010, 401, 1709-1759.	4.4	13
63	THE MULTI-WAVELENGTH EXTREME STARBURST SAMPLE OF LUMINOUS GALAXIES. I. SAMPLE CHARACTERISTICS. Astronomical Journal, 2010, 140, 2052-2069.	4.7	2
64	Primary-Beam Shape Calibration from Mosaicked, Interferometric Observations. Publications of the Astronomical Society of the Pacific, 2010, 122, 1510-1517.	3.1	3
65	THE <i>SPITZER</i> DEEP, WIDE-FIELD SURVEY. Astrophysical Journal, 2009, 701, 428-453.	4.5	183
66	The Allen Telescope Array: The First Widefield, Panchromatic, Snapshot Radio Camera for Radio Astronomy and SETI. Proceedings of the IEEE, 2009, 97, 1438-1447.	21.3	110
67	A young, dusty, compact radio source within a Lyα halo. Monthly Notices of the Royal Astronomical Society, 2008, 389, 792-798.	4.4	13
68	RADIO-LOUD HIGH-REDSHIFT PROTOGALAXY CANDIDATES IN BO×TES. Astronomical Journal, 2008, 135, 1793-1802.	4.7	9
69	Radio AGNs in 13,240 Galaxy Clusters from the Sloan Digital Sky Survey. Astrophysical Journal, 2007, 667, L13-L16.	4.5	26
70	Imaging and spectroscopy of ultrasteep spectrum radio sources. Monthly Notices of the Royal Astronomical Society, 2007, 378, 551-562.	4.4	26
71	Minkowski's Object: A Starburst Triggered by a Radio Jet, Revisited. Astrophysical Journal, 2006, 647, 1040-1055.	4.5	135
72	The 6C** sample of steep-spectrum radio sources – I. Radio data, near-infrared imaging and optical spectroscopy. Monthly Notices of the Royal Astronomical Society, 2006, 373, 1531-1562.	4.4	24

#	Article	IF	CITATIONS
73	The Filamentary Large-Scale Structure around thez = 2.16 Radio Galaxy PKS 1138-262. Astronomical Journal, 2005, 130, 867-872.	4.7	36
74	High-redshift clusters from NVSS: the TexOx Cluster (TOC) Survey. New Astronomy Reviews, 2003, 47, 333-337.	12.8	0
75	Detection of a cosmic microwave background decrement towards a cluster of mJy radio sources. Monthly Notices of the Royal Astronomical Society, 2002, 331, 1-6.	4.4	9
76	A sample of 6C radio sources designed to find objects at redshiftz>4- III. Imaging and the radio galaxyK-zrelation. Monthly Notices of the Royal Astronomical Society, 2001, 326, 1585-1600.	4.4	121