
Ying-Fang Yao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9490347/publications.pdf Version: 2024-02-01

#	Article	lF	CITATIONS
1	An Extrinsic Faradaic Layer on CuSn for High-Performance Electrocatalytic CO ₂ Reduction. CCS Chemistry, 2022, 4, 1610-1618.	4.6	12
2	Photosynthetic microorganisms coupled photodynamic therapy for enhanced antitumor immune effect. Bioactive Materials, 2022, 12, 97-106.	8.6	23
3	Host/Guest Nanostructured Photoanodes Integrated with Targeted Enhancement Strategies for Photoelectrochemical Water Splitting. Advanced Science, 2022, 9, e2103744.	5.6	31
4	A high-voltage solar rechargeable device based on a CoPi/BiVO ₄ faradaic junction. Journal of Materials Chemistry A, 2022, 10, 1802-1807.	5.2	6
5	General synthesis of high-entropy alloy and ceramic nanoparticles in nanoseconds. , 2022, 1, 138-146.		91
6	Single Pd–S <i>_x</i> Sites <i>In Situ</i> Coordinated on CdS Surface as Efficient Hydrogen Autotransfer Shuttles for Highly Selective Visible-Light-Driven C–N Coupling. ACS Catalysis, 2022, 12, 4481-4490.	5.5	28
7	Influence of charge transport layer on the crystallinity and charge extraction of pure tin-based halide perovskite film. Journal of Energy Chemistry, 2022, 69, 612-615.	7.1	2
8	Symbiotic Algae–Bacteria Dressing for Producing Hydrogen to Accelerate Diabetic Wound Healing. Nano Letters, 2022, 22, 229-237.	4.5	48
9	Extraterrestrial photosynthesis by Chang'E-5 lunar soil. Joule, 2022, 6, 1008-1014.	11.7	15
10	Photovoltage memory effect in a portable Faradaic junction solar rechargeable device. Nature Communications, 2022, 13, 2544.	5.8	11
11	High-performance photocatalytic nonoxidative conversion of methane to ethane and hydrogen by heteroatoms-engineered TiO2. Nature Communications, 2022, 13, 2806.	5.8	89
12	Scintillator-based radiocatalytic superoxide radical production for long-term tumor DNA damage. Biomaterials Science, 2022, 10, 3433-3440.	2.6	2
13	Surpassing electrocatalytic limit of earth-abundant Fe4+ embedded in N-doped graphene for (photo)electrocatalytic water oxidation. Journal of Energy Chemistry, 2021, 54, 274-281.	7.1	5
14	A Capacitorâ€ŧype Faradaic Junction for Direct Solar Energy Conversion and Storage. Angewandte Chemie - International Edition, 2021, 60, 1390-1395.	7.2	19
15	A Capacitorâ€ŧype Faradaic Junction for Direct Solar Energy Conversion and Storage. Angewandte Chemie, 2021, 133, 1410-1415.	1.6	1
16	Domino Effect: Gold Electrocatalyzing Lithium Reduction to Accelerate Nitrogen Fixation. Angewandte Chemie - International Edition, 2021, 60, 5257-5261.	7.2	58
17	Evaluating the promotional effects of WO3 underlayers in BiVO4 water splitting photoanodes. Chemical Engineering Journal, 2021, 417, 128095.	6.6	27
18	Domino Effect: Gold Electrocatalyzing Lithium Reduction to Accelerate Nitrogen Fixation. Angewandte Chemie, 2021, 133, 5317-5321.	1.6	12

Ying-Fang Yao

#	Article	IF	CITATIONS
19	Do Cu Substrates Participate in Bi Electrocatalytic CO ₂ Reduction?. ChemNanoMat, 2021, 7, 128-133.	1.5	6
20	Understanding the enhanced catalytic activity of high entropy alloys: from theory to experiment. Journal of Materials Chemistry A, 2021, 9, 19410-19438.	5.2	43
21	Photocatalytic Hydrogen Production by Stable CsPbBr ₃ @PANI Nanoparticles in Aqueous Solution. ChemCatChem, 2021, 13, 1711-1716.	1.8	15
22	Extraterrestrial artificial photosynthetic materials for <i>in-situ</i> resource utilization. National Science Review, 2021, 8, nwab104.	4.6	17
23	2D Highâ€Entropy Hydrotalcites. Small, 2021, 17, e2103412.	5.2	27
24	Constructing spin pathways in LaCoO3 by Mn substitution to promote oxygen evolution reaction. Applied Physics Letters, 2021, 119, .	1.5	12
25	Faradaic junction and isoenergetic charge transfer mechanism on semiconductor/semiconductor interfaces. Nature Communications, 2021, 12, 6363.	5.8	14
26	In Situ Determination of Polaron-Mediated Ultrafast Electron Trapping in Rutile TiO ₂ Nanorod Photoanodes. Journal of Physical Chemistry Letters, 2021, 12, 10815-10822.	2.1	14
27	Porous Sn3O4 nanosheets on PPy hollow rod with photo-induced electrons oriented migration for enhanced visible-light hydrogen production. Applied Catalysis B: Environmental, 2020, 279, 119341.	10.8	48
28	Passivation Strategy of Reducing Both Electron and Hole Trap States for Achieving High-Efficiency PbS Quantum-Dot Solar Cells with Power Conversion Efficiency over 12%. ACS Energy Letters, 2020, 5, 3224-3236.	8.8	49
29	Mildly regulated intrinsic faradaic layer at the oxide/water interface for improved photoelectrochemical performance. Chemical Science, 2020, 11, 6297-6304.	3.7	15
30	Reversible Charge Transfer and Adjustable Potential Window in Semiconductor/Faradaic Layer/Liquid Junctions. IScience, 2020, 23, 100949.	1.9	17
31	Super stable CsPbBr3@SiO2 tumor imaging reagent by stress-response encapsulation. Nano Research, 2020, 13, 795-801.	5.8	55
32	The interparticle distance limit for multiple exciton dissociation in PbS quantum dot solid films. Nanoscale Horizons, 2019, 4, 445-451.	4.1	19
33	Highly Durable and Active Ternary Pt–Au–Ni Electrocatalyst for Oxygen Reduction Reaction. ChemCatChem, 2018, 10, 3049-3056.	1.8	22
34	Unlocking the potential of graphene for water oxidation using an orbital hybridization strategy. Energy and Environmental Science, 2018, 11, 407-416.	15.6	52
35	An all-inorganic lead halide perovskite-based photocathode for stable water reduction. Chemical Communications, 2018, 54, 11459-11462.	2.2	61
36	Lead Selenide Colloidal Quantum Dot Solar Cells Achieving High Open-Circuit Voltage with One-Step Deposition Strategy. Journal of Physical Chemistry Letters, 2018, 9, 3598-3603.	2.1	38

Ying-Fang Yao

#	Article	IF	CITATIONS
37	Ultralong metahewettite CaV 6 O 16 ·3H 2 O nanoribbons as novel host materials for lithium storage: Towards high-rate and excellent long-term cyclability. Nano Energy, 2016, 22, 38-47.	8.2	38
38	Adjusting the Crystallinity of Mesoporous Spinel CoGa ₂ O ₄ for Efficient Water Oxidation. ACS Applied Materials & Interfaces, 2016, 8, 12887-12893.	4.0	26
39	<i>Acacia Senegal</i> –Inspired Bifunctional Binder for Longevity of Lithium–Sulfur Batteries. Advanced Energy Materials, 2015, 5, 1500878.	10.2	223
40	<i>In Situ</i> Fabrication of Highly Conductive Metal Nanowire Networks with High Transmittance from Deep-Ultraviolet to Near-Infrared. ACS Nano, 2015, 9, 2502-2509.	7.3	65
41	Electrospun fibrous scaffolds combined with nanoscale hydroxyapatite induce osteogenic differentiation of human periodontal ligament cells. International Journal of Nanomedicine, 2014, 9, 4135.	3.3	37
42	One-dimensional assembly of TiO ₂ nanoparticles toward enhancing light harvesting and electron transport for application in dye-sensitized solar cells. RSC Advances, 2014, 4, 10519-10524.	1.7	5
43	Vitamin E assisted polymer electrolyte fuel cells. Energy and Environmental Science, 2014, 7, 3362-3370.	15.6	35