
S M Kerr

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9490131/publications.pdf Version: 2024-02-01

S M KEDD

#	Article	IF	CITATIONS
1	Design of inertial fusion implosions reaching the burning plasma regime. Nature Physics, 2022, 18, 251-258.	6.5	87
2	Burning plasma achieved in inertial fusion. Nature, 2022, 601, 542-548.	13.7	233
3	Enhancement of high energy X-ray radiography using compound parabolic concentrator targets. High Energy Density Physics, 2022, 42, 100978.	0.4	6
4	Optimal choice of multiple line-of-sight measurements determining plasma hotspot velocity at the National Ignition Facility. Review of Scientific Instruments, 2021, 92, 023513.	0.6	5
5	The five line-of-sight neutron time-of-flight (nToF) suite on the National Ignition Facility (NIF). Review of Scientific Instruments, 2021, 92, 023516.	0.6	11
6	Multi-pulse time resolved gamma ray spectroscopy of the advanced radiographic capability using gas Cherenkov diagnostics. Physics of Plasmas, 2021, 28, .	0.7	5
7	Enhancing positron production using front surface target structures. Applied Physics Letters, 2021, 118, .	1.5	10
8	Three-dimensional diagnostics and measurements of inertial confinement fusion plasmas. Review of Scientific Instruments, 2021, 92, 053526.	0.6	5
9	Enhancements in laser-generated hot-electron production via focusing cone targets at short pulse and high contrast. Physical Review E, 2021, 103, 053207.	0.8	13
10	Absorption of relativistic multi-picosecond laser pulses in wire arrays. Physics of Plasmas, 2021, 28, 103102.	0.7	3
11	Plasma expansion and relativistic filamentation in intense laser-irradiated cone targets. Physics of Plasmas, 2021, 28, .	0.7	3
12	Production of relativistic electrons at subrelativistic laser intensities. Physical Review E, 2020, 101, 031201.	0.8	18
13	Enhanced laser–plasma interactions using non-imaging optical concentrator targets. Optica, 2020, 7, 129.	4.8	20
14	Dynamic focusing of laser driven positron jets by self-generated fields. New Journal of Physics, 2020, 22, 123020.	1.2	2
15	Calibration of proton dispersion for the NIF electron positron proton spectrometer (NEPPS) for short-pulse laser experiments on the NIF ARC. Review of Scientific Instruments, 2018, 89, 101145.	0.6	8
16	Collisionless shock acceleration of narrow energy spread ion beams from mixed species plasmas using <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">display="inline"> <mml:mrow> <mml:mn> 1 </mml:mn> <mml:mtext>   </mml:mtext> a€‰   a€‰ a€‰ a€ mathvariant="normal"> m </mml:mrow> </mml:math> lasers. Physical Review Accelerators	m tœxt > <n< td=""><td>1/4</td></n<>	1/4
17	and Beams, 2018, 21, . Measurements of ionization states in warm dense aluminum with betatron radiation. Physical Review E, 2017, 95, 053208.	0.8	24
18	Collimated Propagation of Fast Electron Beams Accelerated by High-Contrast Laser Pulses in Highly Resistive Shocked Carbon. Physical Review Letters, 2017, 118, 205001.	2.9	11

S M Kerr

#	Article	IF	CITATIONS
19	Two-dimensional time-resolved ultra-high speed imaging of K-alpha emission from short-pulse-laser interactions to observe electron recirculation. Applied Physics Letters, 2017, 110, 144102.	1.5	13
20	Progress Towards a Laser Produced Relativistic Electron-Positron Pair Plasma. Journal of Physics: Conference Series, 2016, 688, 012010.	0.3	4
21	High-intensity laser-accelerated ion beam produced from cryogenic micro-jet target. Review of Scientific Instruments, 2016, 87, 11D827.	0.6	32
22	Target material dependence of positron generation from high intensity laser-matter interactions. Physics of Plasmas, 2016, 23, .	0.7	18
23	Inverse faraday effect magnetic field generation in laser induced plasma. , 2016, , .		0
24	Scaling the Yield of Laser-Driven Electron-Positron Jets to Laboratory Astrophysical Applications. Physical Review Letters, 2015, 114, 215001.	2.9	104
25	Reflective multilayer optic as hard X-ray diagnostic on laser-plasma experiment. Review of Scientific Instruments, 2015, 86, 013110.	0.6	4
26	The scaling of electron and positron generation in intense laser-solid interactions. Physics of Plasmas, 2015, 22, .	0.7	37
27	Enhanced Relativistic-Electron-Beam Energy Loss in Warm Dense Aluminum. Physical Review Letters, 2015, 114, 095004.	2.9	23
28	A high-resolution imaging x-ray crystal spectrometer for high energy density plasmas. Review of Scientific Instruments, 2014, 85, 11E606.	0.6	14
29	Emittance of positron beams produced in intense laser plasma interaction. Physics of Plasmas, 2013, 20, .	0.7	26
30	Real-time optical-resolution photoacoustic microscopy using fiber-laser technology. , 2011, , .		1
31	Optical-resolution photoacoustic micro-endoscopy using image-guide fibers and fiber laser technology. Proceedings of SPIE, 2011, , .	0.8	5
32	Optical resolution photoacoustic microscopy using novel high-repetition-rate passively Q-switched microchip and fiber lasers. Journal of Biomedical Optics, 2010, 15, 056017.	1.4	41
33	High repetition rate passively Q-switched fiber and microchip lasers for optical resolution photoacoustic imaging. , 2010, , .		0