Sophie E Polo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9489834/publications.pdf

Version: 2024-02-01

33 papers 3,682 citations

361045 20 h-index 32 g-index

56 all docs

56 docs citations

56 times ranked 5601 citing authors

#	Article	lF	CITATIONS
1	Imaging the Response to DNA Damage in Heterochromatin Domains. Frontiers in Cell and Developmental Biology, 2022, 10, .	1.8	2
2	Control of the chromatin response to DNA damage: Histone proteins pull the strings. Seminars in Cell and Developmental Biology, 2021, 113, 75-87.	2.3	31
3	Imaging the response to DNA damage in heterochromatin domains reveals core principles of heterochromatin maintenance. Nature Communications, 2021, 12, 2428.	5.8	30
4	CorneliaÂde Lange syndrome-associated mutations cause a DNA damage signalling and repair defect. Nature Communications, 2021, 12, 3127.	5.8	18
5	A molecular Rosetta Stone to decipher the impact of chromatin features on the repair of Cas9-mediated DNA double-strand breaks. Molecular Cell, 2021, 81, 2059-2060.	4.5	1
6	Dissecting regulatory pathways for transcription recovery following DNA damage reveals a non-canonical function of the histone chaperone HIRA. Nature Communications, 2021, 12, 3835.	5.8	14
7	DNA Double-Strand Break Repair: All Roads Lead to HeterochROMAtin Marks. Frontiers in Genetics, 2021, 12, 730696.	1.1	13
8	Reshaping Chromatin Architecture around DNA Breaks. Trends in Biochemical Sciences, 2020, 45, 177-179.	3.7	9
9	Histone Variants: Guardians of Genome Integrity. Cells, 2020, 9, 2424.	1.8	27
10	The response to DNA damage in heterochromatin domains. Chromosoma, 2018, 127, 291-300.	1.0	40
11	The Histone Chaperone FACT Coordinates H2A.X-Dependent Signaling and Repair of DNA Damage. Molecular Cell, 2018, 72, 888-901.e7.	4.5	74
12	Live Imaging of Parental Histone Variant Dynamics in UVC-Damaged Chromatin. Methods in Molecular Biology, 2018, 1832, 243-253.	0.4	2
13	Choreography of parental histones in damaged chromatin. Nucleus, 2017, 8, 255-260.	0.6	4
14	Genome and Epigenome Maintenance by Keeping Histone Turnover in Check. Molecular Cell, 2017, 66, 3-4.	4.5	4
15	Real-Time Tracking of Parental Histones Reveals Their Contribution to Chromatin Integrity Following DNA Damage. Molecular Cell, 2016, 64, 65-78.	4.5	54
16	Epigenome Maintenance in Response to DNA Damage. Molecular Cell, 2016, 62, 712-727.	4.5	123
17	Imaging Local Deposition of Newly Synthesized Histones in UVC-Damaged Chromatin. Methods in Molecular Biology, 2015, 1288, 337-347.	0.4	8
18	Chromatin plasticity in response to DNA damage: The shape of things to come. DNA Repair, 2015, 32, 120-126.	1.3	30

#	Article	IF	CITATIONS
19	Chromatin dynamics after DNA damage: The legacy of the access–repair–restore model. DNA Repair, 2015, 36, 114-121.	1.3	109
20	Reshaping Chromatin after DNA Damage: The Choreography of Histone Proteins. Journal of Molecular Biology, 2015, 427, 626-636.	2.0	68
21	How to restore chromatin structure and function in response to ⟨scp⟩DNA⟨/scp⟩ damage – let the chaperones play. FEBS Journal, 2014, 281, 2315-2323.	2.2	9
22	Blurring the line between the DNA damage response and transcription: The importance of chromatin dynamics. Experimental Cell Research, 2014, 329, 148-153.	1.2	36
23	Transcription Recovery after DNA Damage Requires Chromatin Priming by the H3.3 Histone Chaperone HIRA. Cell, 2013, 155, 94-106.	13.5	243
24	Fine-tuning the p53 response to DNA damage: A new piece in the puzzle. Cell Cycle, 2013, 12, 1337-1337.	1.3	0
25	Chromatin Dynamics during Nucleotide Excision Repair: Histones on the Move. International Journal of Molecular Sciences, 2012, 13, 11895-11911.	1.8	21
26	Regulation of DNA-End Resection by hnRNPU-like Proteins Promotes DNA Double-Strand Break Signaling and Repair. Molecular Cell, 2012, 45, 505-516.	4.5	160
27	Prime, Repair, Restore: The Active Role of Chromatin in the DNA Damage Response. Molecular Cell, 2012, 46, 722-734.	4.5	292
28	Replication stress induces 53BP1-containing OPT domains in G1 cells. Journal of Cell Biology, 2011, 193, 97-108.	2.3	284
29	Dynamics of DNA damage response proteins at DNA breaks: a focus on protein modifications. Genes and Development, 2011, 25, 409-433.	2.7	927
30	Regulation of DNA-damage responses and cell-cycle progression by the chromatin remodelling factor CHD4. EMBO Journal, 2010, 29, 3130-3139.	3.5	300
31	Poly(ADP-ribose)–Dependent Regulation of DNA Repair by the Chromatin Remodeling Enzyme ALC1. Science, 2009, 325, 1240-1243.	6.0	504
32	New Histone Incorporation Marks Sites of UV Repair in Human Cells. Cell, 2006, 127, 481-493.	13.5	228
33	Methods for Studying Chromatin Assembly Coupled to DNA Repair. Methods in Enzymology, 2006, 409, 358-374.	0.4	15