List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9489743/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Valorization of Small Alkanes by Biocatalytic Oxyfunctionalization. ChemSusChem, 2022, 15, .	6.8	9
2	Is water the best solvent for biocatalysis?. Molecular Catalysis, 2022, 517, 112035.	2.0	22
3	Biocatalysis making waves in organic chemistry. Chemical Society Reviews, 2022, 51, 594-627.	38.1	98
4	A Peroxygenaseâ€Alcohol Dehydrogenase Cascade Reaction to Transform Ethylbenzene Derivatives into Enantioenriched Phenylethanols. ChemBioChem, 2022, 23, .	2.6	12
5	Chemoenzymatic intermolecular haloether synthesis. Molecular Catalysis, 2022, 517, 112061.	2.0	3
6	Enzymatic Bromocyclization of α―and γâ€Allenols by Chloroperoxidase from Curvularia inaequalis. ChemistryOpen, 2022, 11, e202100236.	1.9	5
7	Unbiased Photoelectrode Interfaces for Solar Coupling of Lignin Oxidation with Biocatalytic Câ•C Bond Hydrogenation. ACS Applied Materials & Interfaces, 2022, 14, 11465-11473.	8.0	16
8	Lignin as a multifunctional photocatalyst for solar-powered biocatalytic oxyfunctionalization of C–H bonds. , 2022, 1, 217-226.		40
9	Process Intensification as Game Changer in Enzyme Catalysis. Frontiers in Catalysis, 2022, 2, .	3.9	19
10	More efficient enzymatic cascade reactions by spatially confining enzymes via the SpyTag/SpyCatcher technology. Molecular Catalysis, 2022, 521, 112188.	2.0	8
11	Molecular Catalysis for the Chemistry of the future: a perspective. Molecular Catalysis, 2022, 522, 112233.	2.0	9
12	Surfing the wave of oxyfunctionalization chemistry by engineering fungal unspecific peroxygenases. Current Opinion in Structural Biology, 2022, 73, 102342.	5.7	30
13	Chemoenzymatic Hunsdiecker-Type Decarboxylative Bromination of Cinnamic Acids. ACS Catalysis, 2022, 12, 4554-4559.	11.2	8
14	Study on green extraction of limonene from orange peel and cascade catalysis to produce carvol and carvone in deep eutectic solvents. Flavour and Fragrance Journal, 2022, 37, 254-261.	2.6	4
15	Alcohol Dehydrogenases as Catalysts in Organic Synthesis. Frontiers in Catalysis, 2022, 2, .	3.9	21
16	Assessing Peroxygenase-Mediated Oxidations in the Presence of High Concentrations of Water-Miscible Co-Solvents. Frontiers in Catalysis, 2022, 2, .	3.9	12
17	Triplet–triplet annihilation-based photon-upconversion to broaden the wavelength spectrum for photobiocatalysis. Scientific Reports, 2022, 12, .	3.3	10
18	A Biocatalytic Platform for the Synthesis of Enantiopure Propargylic Alcohols and Amines. Organic Letters, 2022, 24, 4252-4257.	4.6	9

#	Article	IF	CITATIONS
19	Heat-fueled enzymatic cascade for selective oxyfunctionalization of hydrocarbons. Nature Communications, 2022, 13, .	12.8	17
20	Differences in barriers for controlled learning about safety between biotechnology and chemistry. Nature Communications, 2022, 13, .	12.8	2
21	Continuous-flow CvFAP photodecarboxylation of palmitic acid under environmentally friendly conditions. Molecular Catalysis, 2022, 528, 112469.	2.0	7
22	Recent developments in the use of peroxygenases – Exploring their high potential in selective oxyfunctionalisations. Biotechnology Advances, 2021, 51, 107615.	11.7	101
23	Biocatalytic Reduction Reactions from a Chemist's Perspective. Angewandte Chemie - International Edition, 2021, 60, 5644-5665.	13.8	118
24	Biokatalytische Reduktionen aus der Sicht eines Chemikers. Angewandte Chemie, 2021, 133, 5706-5727.	2.0	12
25	Natural deep eutectic solvents as performance additives for biocatalysis. Advances in Botanical Research, 2021, , 95-132.	1.1	12
26	Asymmetric azidohydroxylation of styrene derivatives mediated by a biomimetic styrene monooxygenase enzymatic cascade. Catalysis Science and Technology, 2021, 11, 5077-5085.	4.1	14
27	An alginate-confined peroxygenase-CLEA for styrene epoxidation. Chemical Communications, 2021, 57, 5766-5769.	4.1	9
28	Intensification of Photobiocatalytic Decarboxylation of Fatty Acids for the Production of Biodiesel. ChemSusChem, 2021, 14, 1053-1056.	6.8	31
29	Biocatalytic Aromaticity-Breaking Epoxidation of Naphthalene and Nucleophilic Ring-Opening Reactions. ACS Catalysis, 2021, 11, 2644-2649.	11.2	14
30	Immobilization of the Peroxygenase from Agrocybe aegerita. The Effect of the Immobilization pH on the Features of an Ionically Exchanged Dimeric Peroxygenase. Catalysts, 2021, 11, 560.	3.5	12
31	Production of Bio-alkanes from Biomass and CO2. Trends in Biotechnology, 2021, 39, 370-380.	9.3	37
32	Environmentally benign solid catalysts for sustainable biodiesel production: A critical review. Science of the Total Environment, 2021, 768, 144856.	8.0	87
33	Directed evolution of unspecific peroxygenase in organic solvents. Biotechnology and Bioengineering, 2021, 118, 3002-3014.	3.3	22
34	Pilot-Scale Production of Peroxygenase from <i>Agrocybe aegerita</i> . Organic Process Research and Development, 2021, 25, 1414-1418.	2.7	35
35	Safe-by-Design in Engineering: An Overview and Comparative Analysis of Engineering Disciplines. International Journal of Environmental Research and Public Health, 2021, 18, 6329.	2.6	12
36	Stabilisation of the Fatty Acid Decarboxylase from <i>Chlorella variabilis</i> by Caprylic Acid. ChemBioChem, 2021, 22, 2420-2423.	2.6	28

#	Article	IF	CITATIONS
37	Optimization and Engineering of Fatty Acid Photodecarboxylase for Substrate Specificity. ChemCatChem, 2021, 13, 4038-4046.	3.7	13
38	Bacterial Outer Membrane Vesicles as Nanoâ€Scale Bioreactors: A Fatty Acid Conversion Case Study. ChemCatChem, 2021, 13, 4080-4086.	3.7	9
39	Two (Chemo)-Enzymatic Cascades for the Production of Opposite Enantiomers of Chiral Azidoalcohols. Catalysts, 2021, 11, 982.	3.5	4
40	Novel oleate hydratases and potential biotechnological applications. Applied Microbiology and Biotechnology, 2021, 105, 6159-6172.	3.6	9
41	Aqueous chemoenzymatic one-pot enantioselective synthesis of tertiary α-aryl cycloketones <i>via</i> Pd-catalyzed C–C formation and enzymatic Cĩ€€ asymmetric hydrogenation. Green Chemistry, 2021, 23, 1960-1964.	9.0	29
42	Protection strategies for biocatalytic proteins under plasma treatment. Journal Physics D: Applied Physics, 2021, 54, 035204.	2.8	5
43	Choline Chloride-Based DES as Solvents/Catalysts/Chemical Donors in Pharmaceutical Synthesis. Molecules, 2021, 26, 6286.	3.8	26
44	Chemoenzymatic Halocyclization of γ,δâ€Unsaturated Carboxylic Acids and Alcohols. ChemSusChem, 2020, 13, 97-101.	6.8	22
45	Photoenzymatic Production of Next Generation Biofuels from Natural Triglycerides Combining a Hydrolase and a Photodecarboxylase. ChemPhotoChem, 2020, 4, 39-44.	3.0	41
46	Photochemical regeneration of flavoenzymes – An Old Yellow Enzyme case-study. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2020, 1868, 140303.	2.3	11
47	Metals in Biotechnology: Crâ€Ðriven Stereoselective Reduction of Conjugated C=C Double Bonds. ChemBioChem, 2020, 21, 1112-1115.	2.6	3
48	Natural Deep Eutectic Solvents as Performance Additives for Peroxygenase Catalysis. ChemCatChem, 2020, 12, 989-994.	3.7	26
49	Chemoenzymatic Halocyclization of γ,Î′â€Unsaturated Carboxylic Acids and Alcohols. ChemSusChem, 2020, 13, 5-5.	6.8	5
50	Towards Preparative Chemoenzymatic Oxidative Decarboxylation of Glutamic Acid. ChemCatChem, 2020, 12, 2180-2183.	3.7	11
51	Flavoenzymeâ€mediated Regioselective Aromatic Hydroxylation with Coenzyme Biomimetics. ChemCatChem, 2020, 12, 1368-1375.	3.7	23
52	An Ultrasensitive Fluorescence Assay for the Detection of Halides and Enzymatic Dehalogenation. ChemCatChem, 2020, 12, 2032-2039.	3.7	9
53	Chemoenzymatic Halocyclization of 4-Pentenoic Acid at Preparative Scale. ACS Sustainable Chemistry and Engineering, 2020, 8, 2602-2607.	6.7	14
54	H ₂ as a fuel for flavin- and H ₂ O ₂ -dependent biocatalytic reactions. Chemical Communications, 2020, 56, 9667-9670.	4.1	13

#	Article	IF	CITATIONS
55	Nuclear Waste and Biocatalysis: A Sustainable Liaison?. ACS Catalysis, 2020, 10, 14195-14200.	11.2	20
56	Microscale Atmospheric Pressure Plasma Jet as a Source for Plasmaâ€Driven Biocatalysis. ChemCatChem, 2020, 12, 5893-5897.	3.7	11
57	Biocatalytic Oxidation of Alcohols. Catalysts, 2020, 10, 952.	3.5	32
58	Titelbild: Solarâ€Assisted eBiorefinery: Photoelectrochemical Pairing of Oxyfunctionalization and Hydrogenation Reactions (Angew. Chem. 37/2020). Angewandte Chemie, 2020, 132, 15897-15897.	2.0	0
59	Biocatalytic oxyfunctionalization of butane in a bubbleâ€column reactor. Chemie-Ingenieur-Technik, 2020, 92, 1211-1211.	0.8	Ο
60	A Pioneering Career in Catalysis: Manfred T. Reetz. ACS Catalysis, 2020, 10, 15123-15139.	11.2	19
61	Evolved Peroxygenase–Aryl Alcohol Oxidase Fusions for Self-Sufficient Oxyfunctionalization Reactions. ACS Catalysis, 2020, 10, 13524-13534.	11.2	32
62	Enzymatic Oxidation of Butane to 2â€Butanol in a Bubble Column. ChemCatChem, 2020, 12, 3666-3669.	3.7	13
63	Photobiocatalytic synthesis of chiral secondary fatty alcohols from renewable unsaturated fatty acids. Nature Communications, 2020, 11, 2258.	12.8	58
64	Solarâ€Assisted eBiorefinery: Photoelectrochemical Pairing of Oxyfunctionalization and Hydrogenation Reactions. Angewandte Chemie - International Edition, 2020, 59, 15886-15890.	13.8	26
65	Production of fatty alcohols from non-edible oils by enzymatic cascade reactions. Sustainable Energy and Fuels, 2020, 4, 4232-4237.	4.9	18
66	Solarâ€Assisted eBiorefinery: Photoelectrochemical Pairing of Oxyfunctionalization and Hydrogenation Reactions. Angewandte Chemie, 2020, 132, 16020-16024.	2.0	6
67	A Minimized Chemoenzymatic Cascade for Bacterial Luciferase in Bioreporter Applications. ChemBioChem, 2020, 21, 2073-2079.	2.6	10
68	Piezobiocatalysis: Ultrasound-Driven Enzymatic Oxyfunctionalization of C–H Bonds. ACS Catalysis, 2020, 10, 5236-5242.	11.2	50
69	Water-Soluble Anthraquinone Photocatalysts Enable Methanol-Driven Enzymatic Halogenation and Hydroxylation Reactions. ACS Catalysis, 2020, 10, 8277-8284.	11.2	41
70	Plasmaâ€Ðriven inâ€Situ Production of Hydrogen Peroxide for Biocatalysis. ChemSusChem, 2020, 13, 2072-2079.	6.8	30
71	FOx News: Towards Methanolâ€driven Biocatalytic Oxyfunctionalisation Reactions. ChemCatChem, 2020, 12, 2713-2716.	3.7	15
72	Enantioselective Sulfoxidation of Thioanisole by Cascading a Choline Oxidase and a Peroxygenase in the Presence of Natural Deep Eutectic Solvents. ChemPlusChem, 2020, 85, 254-257.	2.8	22

#	Article	IF	CITATIONS
73	Wholeâ€Cell Photoenzymatic Cascades to Synthesize Longâ€Chain Aliphatic Amines and Esters from Renewable Fatty Acids. Angewandte Chemie - International Edition, 2020, 59, 7024-7028.	13.8	60
74	Whole ell Photoenzymatic Cascades to Synthesize Long hain Aliphatic Amines and Esters from Renewable Fatty Acids. Angewandte Chemie, 2020, 132, 7090-7094.	2.0	22
75	Selective Oxyfunctionalisation Reactions Driven by Sulfite Oxidaseâ€Catalysed <i>In Situ</i> Generation of H ₂ O ₂ . ChemCatChem, 2020, 12, 3186-3189.	3.7	10
76	Solventâ€Free Photobiocatalytic Hydroxylation of Cyclohexane. ChemCatChem, 2020, 12, 4009-4013.	3.7	39
77	â€~Clean' hydrolase reactions using commercial washing powder. RSC Advances, 2019, 9, 24039-24042.	3.6	0
78	Peroxygenaseâ€Catalysed Epoxidation of Styrene Derivatives in Neat Reaction Media. ChemCatChem, 2019, 11, 4519-4523.	3.7	38
79	Cascading g-C ₃ N ₄ and Peroxygenases for Selective Oxyfunctionalization Reactions. ACS Catalysis, 2019, 9, 7409-7417.	11.2	64
80	Nicotinamide adenine dinucleotide as a photocatalyst. Science Advances, 2019, 5, eaax0501.	10.3	54
81	Surface-Doped Graphitic Carbon Nitride Catalyzed Photooxidation of Olefins and Dienes: Chemical Evidence for Electron Transfer and Singlet Oxygen Mechanisms. Catalysts, 2019, 9, 639.	3.5	7
82	P450BM3-Catalyzed Oxidations Employing Dual Functional Small Molecules. Catalysts, 2019, 9, 567.	3.5	10
83	Bias-Free In Situ H ₂ O ₂ Generation in a Photovoltaic-Photoelectrochemical Tandem Cell for Biocatalytic Oxyfunctionalization. ACS Catalysis, 2019, 9, 10562-10566.	11.2	40
84	Haloperoxidases as catalysts in organic synthesis. Organic and Biomolecular Chemistry, 2019, 17, 9267-9274.	2.8	43
85	H ₂ O ₂ Production at Low Overpotentials for Electroenzymatic Halogenation Reactions. ChemSusChem, 2019, 12, 4759-4763.	6.8	38
86	Synthesis of enantiomerically pure alcohols and amines <i>via</i> biocatalytic deracemisation methods. Catalysis Science and Technology, 2019, 9, 5487-5503.	4.1	43
87	Multi-Catalytic Route for the Synthesis of (S)-Tembamide. Catalysts, 2019, 9, 822.	3.5	2
88	Hydrocarbon Synthesis via Photoenzymatic Decarboxylation of Carboxylic Acids. Journal of the American Chemical Society, 2019, 141, 3116-3120.	13.7	123
89	Photoenzymatic epoxidation of styrenes. Chemical Communications, 2019, 55, 1790-1792.	4.1	23
90	Energising the E-factor: The E+-factor. Tetrahedron, 2019, 75, 1311-1314.	1.9	64

#	Article	IF	CITATIONS
91	Biocatalytically induced surface modification of the tobacco mosaic virus and the bacteriophage M13. Chemical Communications, 2019, 55, 51-54.	4.1	3
92	Bienzymatic Cascade for the Synthesis of an Optically Active O-benzoyl Cyanohydrin. Catalysts, 2019, 9, 522.	3.5	10
93	Hydrogen peroxide driven biocatalysis. Green Chemistry, 2019, 21, 3232-3249.	9.0	133
94	Photoenzymatic Hydroxylation of Ethylbenzene Catalyzed by Unspecific Peroxygenase: Origin of Enzyme Inactivation and the Impact of Light Intensity and Temperature. ChemCatChem, 2019, 11, 3093-3100.	3.7	31
95	An Efficient Strategy for the Production of Epoxidized Oils: Natural Deep Eutectic Solventâ€Based Enzymatic Epoxidation. JAOCS, Journal of the American Oil Chemists' Society, 2019, 96, 671-679.	1.9	5
96	Synthetic Biomimetic Coenzymes and Alcohol Dehydrogenases for Asymmetric Catalysis. Catalysts, 2019, 9, 207.	3.5	16
97	Light-Harvesting Dye–Alginate Hydrogel for Solar-Driven, Sustainable Biocatalysis of Asymmetric Hydrogenation. ACS Sustainable Chemistry and Engineering, 2019, 7, 5632-5637.	6.7	38
98	Synthesis of Vinyl Polymers via Enzymatic Oxidative Polymerisation. Green Chemistry and Sustainable Technology, 2019, , 343-356.	0.7	1
99	A Photo-Enzymatic Cascade to Transform Racemic Alcohols into Enantiomerically Pure Amines. Catalysts, 2019, 9, 305.	3.5	21
100	Formiatâ€Oxidase (FOx) aus Aspergillus oryzae : ein Katalysator für verschiedene H 2 O 2 â€abhägige biokatalytische Oxidationen. Angewandte Chemie, 2019, 131, 7955-7959.	2.0	17
101	Formate Oxidase (FOx) from <i>Aspergillus oryzae</i> : One Catalyst Enables Diverse H ₂ O ₂ à€Dependent Biocatalytic Oxidation Reactions. Angewandte Chemie - International Edition, 2019, 58, 7873-7877.	13.8	67
102	Benchmarking of laboratory evolved unspecific peroxygenases for the synthesis of human drug metabolites. Tetrahedron, 2019, 75, 1827-1831.	1.9	34
103	Natural Deep Eutectic Solvents as Multifunctional Media for the Valorization of Agricultural Wastes. ChemSusChem, 2019, 12, 1310-1315.	6.8	37
104	How To Break the Janus Effect of H ₂ O ₂ in Biocatalysis? Understanding Inactivation Mechanisms To Generate more Robust Enzymes. ACS Catalysis, 2019, 9, 2916-2921.	11.2	18
105	Expanding the Spectrum of Light-Driven Peroxygenase Reactions. ACS Catalysis, 2019, 9, 890-894.	11.2	62
106	Combining Photoâ€Organo Redox―and Enzyme Catalysis Facilitates Asymmetric Câ€H Bond Functionalization. European Journal of Organic Chemistry, 2019, 2019, 80-84.	2.4	58
107	Efficient Aerobic Oxidation of <i>trans</i> â€2â€Hexenâ€1â€ol using the Aryl Alcohol Oxidase from <i>Pleurotus eryngii</i> . Advanced Synthesis and Catalysis, 2019, 361, 2668-2672.	4.3	23
108	Straightforward Regeneration of Reduced Flavin Adenine Dinucleotide Required for Enzymatic Tryptophan Halogenation. ACS Catalysis, 2019, 9, 1389-1395.	11.2	35

.

#	Article	IF	CITATIONS
109	Multienzymatic in situ hydrogen peroxide generation cascade for peroxygenase-catalysed oxyfunctionalisation reactions. Zeitschrift Fur Naturforschung - Section C Journal of Biosciences, 2019, 74, 101-104.	1.4	17
110	Selective Synthesis of the Human Drug Metabolite 5′-Hydroxypropranolol by an Evolved Self-Sufficient Peroxygenase. ACS Catalysis, 2018, 8, 4789-4799.	11.2	70
111	Nonconventional regeneration of redox enzymes – a practical approach for organic synthesis?. Chemical Communications, 2018, 54, 7281-7289.	4.1	49
112	Biokatalytische Oxidationsreaktionen – aus der Sicht eines Chemikers. Angewandte Chemie, 2018, 130, 9380-9404.	2.0	106
113	Biocatalytic Oxidation Reactions: A Chemist's Perspective. Angewandte Chemie - International Edition, 2018, 57, 9238-9261.	13.8	342
114	Deazaflavins as photocatalysts for the direct reductive regeneration of flavoenzymes. Molecular Catalysis, 2018, 452, 277-283.	2.0	15
115	Carbon Nanotube–Graphitic Carbon Nitride Hybrid Films for Flavoenzyme atalyzed Photoelectrochemical Cells. Advanced Functional Materials, 2018, 28, 1705232.	14.9	64
116	Selective aerobic oxidation reactions using a combination of photocatalytic water oxidation and enzymatic oxyfunctionalizations. Nature Catalysis, 2018, 1, 55-62.	34.4	272
117	Biocatalytic synthesis of lactones and lactams. Chemistry - an Asian Journal, 2018, 13, 3601-3610.	3.3	34
118	Stereoselective Double Reduction of 3-Methyl-2-cyclohexenone, by Use of Palladium and Platinum Nanoparticles, in Tandem with Alcohol Dehydrogenase. Nanomaterials, 2018, 8, 853.	4.1	8
119	A Photoenzymatic NADH Regeneration System. ChemBioChem, 2018, 19, 2344-2347.	2.6	33
120	Biocatalytic C=C Bond Reduction through Carbon Nanodotâ€ S ensitized Regeneration of NADH Analogues. Angewandte Chemie - International Edition, 2018, 57, 13825-13828.	13.8	87
121	Horse Liver Alcohol Dehydrogenase-Catalyzed Oxidative Lactamization of Amino Alcohols. ACS Catalysis, 2018, 8, 8680-8684.	11.2	35
122	Production and immobilization of lipase PCL and its application in synthesis of α-linolenic acid-rich diacylglycerol. Journal of Food Biochemistry, 2018, 42, e12574.	2.9	17
123	Biocatalytic synthesis of the Green Note <i>trans</i> -2-hexenal in a continuous-flow microreactor. Beilstein Journal of Organic Chemistry, 2018, 14, 697-703.	2.2	34
124	Biocatalytic C=C Bond Reduction through Carbon Nanodotâ€ S ensitized Regeneration of NADH Analogues. Angewandte Chemie, 2018, 130, 14021-14024.	2.0	20
125	Lichtgetriebene enzymatische Decarboxylierung von FettsÃ ¤ ren. Angewandte Chemie, 2018, 130, 13836-13839.	2.0	21
126	Lightâ€Driven Enzymatic Decarboxylation of Fatty Acids. Angewandte Chemie - International Edition, 2018, 57, 13648-13651.	13.8	133

#	Article	IF	CITATIONS
127	Photoelectrochemical Cells: Carbon Nanotube–Graphitic Carbon Nitride Hybrid Films for Flavoenzymeâ€Catalyzed Photoelectrochemical Cells (Adv. Funct. Mater. 24/2018). Advanced Functional Materials, 2018, 28, 1870164.	14.9	1
128	Towards environmentally acceptable synthesis of chiral α-hydroxy ketones via oxidase-lyase cascades. Green Chemistry, 2017, 19, 1226-1229.	9.0	24
129	Photoelectroenzymatic Oxyfunctionalization on Flavin-Hybridized Carbon Nanotube Electrode Platform. ACS Catalysis, 2017, 7, 1563-1567.	11.2	55
130	Alcohol Dehydrogenases Catalyze the Reduction of Thioesters. ChemCatChem, 2017, 9, 1389-1392.	3.7	9
131	Chemoenzymatic epoxidation of alkenes with Candida antarctica lipase B and hydrogen peroxide in deep eutectic solvents. RSC Advances, 2017, 7, 12518-12523.	3.6	61
132	Changing the electron donor improves azoreductase dye degrading activity at neutral pH. Enzyme and Microbial Technology, 2017, 100, 17-19.	3.2	37
133	Selective Photooxidation Reactions using Waterâ€Soluble Anthraquinone Photocatalysts. ChemCatChem, 2017, 9, 3821-3826.	3.7	59
134	Oxidoreductases on their way to industrial biotransformations. Biotechnology Advances, 2017, 35, 815-831.	11.7	205
135	Halofunctionalization of alkenes by vanadium chloroperoxidase from Curvularia inaequalis. Chemical Communications, 2017, 53, 6207-6210.	4.1	47
136	Nicotinamide Adenine Dinucleotideâ€Dependent Redoxâ€Neutral Convergent Cascade for Lactonizations with Type II Flavin ontaining Monooxygenase. Advanced Synthesis and Catalysis, 2017, 359, 2142-2148.	4.3	27
137	Cofactorâ€Free, Direct Photoactivation of Enoate Reductases for the Asymmetric Reduction of C=C Bonds. Angewandte Chemie, 2017, 129, 8807-8811.	2.0	29
138	Cofactorâ€Free, Direct Photoactivation of Enoate Reductases for the Asymmetric Reduction of C=C Bonds. Angewandte Chemie - International Edition, 2017, 56, 8681-8685.	13.8	74
139	Characterization of the Old Yellow Enzyme Homolog from <i>Bacillus subtilis</i> (YqjM). ChemistrySelect, 2017, 2, 3866-3871.	1.5	23
140	Visible-light-driven photooxidation of alcohols using surface-doped graphitic carbon nitride. Green Chemistry, 2017, 19, 2096-2100.	9.0	49
141	Engineering a lipase B from Candida antactica with efficient perhydrolysis performance by eliminating its hydrolase activity. Scientific Reports, 2017, 7, 44599.	3.3	18
142	Deep Eutectic Solvents Enable More Robust Chemoenzymatic Epoxidation Reactions. ChemCatChem, 2017, 9, 934-936.	3.7	39
143	Peroxygenases en route to becoming dream catalysts. What are the opportunities and challenges?. Current Opinion in Chemical Biology, 2017, 37, 1-9.	6.1	198
144	Selective Activation of Câ^'H Bonds in a Cascade Process Combining Photochemistry and Biocatalysis. Angewandte Chemie - International Edition, 2017, 56, 15451-15455.	13.8	108

FRANK HOLLMANN

#	Article	IF	CITATIONS
145	Selektive Câ€Hâ€Bindungsaktivierung durch eine Kaskade aus Photochemie und Biokatalyse. Angewandte Chemie, 2017, 129, 15654-15658.	2.0	34
146	Deep eutectic solvents as performance additives in biphasic reactions. RSC Advances, 2017, 7, 40367-40370.	3.6	24
147	Photobiocatalytic alcohol oxidation using LED light sources. Green Chemistry, 2017, 19, 376-379.	9.0	44
148	Towards electroenzymatic processes involving old yellow enzymes and mediated cofactor regeneration. Engineering in Life Sciences, 2017, 17, 71-76.	3.6	13
149	Fueling biomass-degrading oxidative enzymes by light-driven water oxidation. Green Chemistry, 2016, 18, 5357-5366.	9.0	52
150	Peroxygenase atalyzed Oxyfunctionalization Reactions Promoted by the Complete Oxidation of Methanol. Angewandte Chemie - International Edition, 2016, 55, 798-801.	13.8	128
151	Rekombinante Cyanobakterien für die asymmetrische Reduktion von C=Câ€Bindungen mithilfe biokatalytischer Wasseroxidation. Angewandte Chemie, 2016, 128, 5672-5675.	2.0	29
152	Special issue OxiZymes 2016. Journal of Molecular Catalysis B: Enzymatic, 2016, 134, 273.	1.8	0
153	A survey of synthetic nicotinamide cofactors in enzymatic processes. Applied Microbiology and Biotechnology, 2016, 100, 4773-4778.	3.6	65
154	Efficient <i>In Situ</i> Regeneration of NADH Mimics by an Artificial Metalloenzyme. ACS Catalysis, 2016, 6, 3553-3557.	11.2	93
155	A Biocatalytic Aza-Achmatowicz Reaction. ACS Catalysis, 2016, 6, 5904-5907.	11.2	42
156	Donor–Acceptor Distance Sampling Enhances the Performance of "Better than Nature―Nicotinamide Coenzyme Biomimetics. Journal of the American Chemical Society, 2016, 138, 11089-11092.	13.7	38
157	Towards preparative peroxygenase-catalyzed oxyfunctionalization reactions in organic media. Journal of Molecular Catalysis B: Enzymatic, 2016, 134, 347-352.	1.8	38
158	Light-driven Enzymatic Decarboxylation. Journal of Visualized Experiments, 2016, , .	0.3	4
159	Recombinant Cyanobacteria for the Asymmetric Reduction of C=C Bonds Fueled by the Biocatalytic Oxidation of Water. Angewandte Chemie - International Edition, 2016, 55, 5582-5585.	13.8	100
160	Substrate and cofactor binding to nitrile reductase: a mass spectrometry based study. Catalysis Science and Technology, 2016, 6, 7391-7397.	4.1	5
161	The Oxygen Dilemma: A Severe Challenge for the Application of Monooxygenases?. ChemBioChem, 2016, 17, 1391-1398.	2.6	125
162	Artificial Photosynthesis: Hybrid Systems. Advances in Biochemical Engineering/Biotechnology, 2016, 158, 137-158.	1.1	3

#	Article	IF	CITATIONS
163	Better than Nature: Nicotinamide Biomimetics That Outperform Natural Coenzymes. Journal of the American Chemical Society, 2016, 138, 1033-1039.	13.7	164
164	Enhancing the productivity of the bi-enzymatic convergent cascade for É>-caprolactone synthesis through design of experiments and a biphasic system. Tetrahedron, 2016, 72, 7222-7228.	1.9	37
165	A Biâ€enzymatic Convergent Cascade for εâ€Caprolactone Synthesis Employing 1,6â€Hexanediol as a â€~Doubleâ€Smart Cosubstrate'. ChemCatChem, 2015, 7, 2442-2445.	3.7	55
166	Chemoenzymatic Halogenation of Phenols by using the Haloperoxidase from <i>Curvularia inaequalis</i> . ChemCatChem, 2015, 7, 4035-4038.	3.7	52
167	On the (Un)greenness of Biocatalysis: Some Challenging Figures and Some Promising Options. Frontiers in Microbiology, 2015, 6, 1257.	3.5	68
168	Scaling-Up of "Smart Cosubstrate―1,4-Butanediol Promoted Asymmetric Reduction of Ethyl-4,4,4-trifluoroacetoacetate in Organic Media. Organic Process Research and Development, 2015, 19, 369-372.	2.7	29
169	Specific oxyfunctionalisations catalysed by peroxygenases: opportunities, challenges and solutions. Catalysis Science and Technology, 2015, 5, 2038-2052.	4.1	116
170	Engineering an enzymatic regeneration system for NAD(P)H oxidation. Journal of Molecular Catalysis B: Enzymatic, 2015, 120, 38-46.	1.8	20
171	Complete Enzymatic Oxidation of Methanol to Carbon Dioxide: Towards More Ecoâ€Efficient Regeneration Systems for Reduced Nicotinamide Cofactors. Advanced Synthesis and Catalysis, 2015, 357, 1687-1691.	4.3	26
172	Nonenzymatic Regeneration of Styrene Monooxygenase for Catalysis. ACS Catalysis, 2015, 5, 2961-2965.	11.2	73
173	Thymol Bromination – A Comparison between Enzymatic and Chemical Catalysis. European Journal of Inorganic Chemistry, 2015, 2015, 3519-3525.	2.0	34
174	Oneâ€pot Conversion of Cycloalkanes to Lactones. ChemCatChem, 2015, 7, 236-239.	3.7	41
175	Photobiocatalytic decarboxylation for olefin synthesis. Chemical Communications, 2015, 51, 1918-1921.	4.1	97
176	Biocatalysis. Catalysis Letters, 2015, 145, 309-345.	2.6	62
177	Lightâ€Accelerated Biocatalytic Oxidation Reactions. ChemPlusChem, 2014, 79, 1554-1557.	2.8	19
178	Alcohol dehydrogenase stabilization by additives under industrially relevant reaction conditions. Journal of Molecular Catalysis B: Enzymatic, 2014, 103, 24-28.	1.8	21
179	Exploring the Substrate Specificity and Enantioselectivity of a Baeyer–Villiger Monooxygenase from Dietzia sp. D5: Oxidation of Sulfides and Aldehydes. Topics in Catalysis, 2014, 57, 366-375.	2.8	30
180	Hydrophobic Formic Acid Esters for Cofactor Regeneration in Aqueous/Organic Two-Liquid Phase Systems. Topics in Catalysis, 2014, 57, 385-391.	2.8	13

#	Article	IF	CITATIONS
181	Recent trends and novel concepts in cofactor-dependent biotransformations. Applied Microbiology and Biotechnology, 2014, 98, 1517-1529.	3.6	123
182	Heterologous expression and characterization of the ene-reductases from Deinococcus radiodurans and Ralstonia metallidurans. Journal of Molecular Catalysis B: Enzymatic, 2014, 99, 89-95.	1.8	26
183	Photobiocatalytic chemistry of oxidoreductases using water as the electron donor. Nature Communications, 2014, 5, 3145.	12.8	135
184	Is Simpler Better? Synthetic Nicotinamide Cofactor Analogues for Redox Chemistry. ACS Catalysis, 2014, 4, 788-797.	11.2	127
185	Enzymatic halogenation of the phenolic monoterpenes thymol and carvacrol with chloroperoxidase. Green Chemistry, 2014, 16, 1104-1108.	9.0	69
186	In situ formation of H2O2 for P450 peroxygenases. Bioorganic and Medicinal Chemistry, 2014, 22, 5692-5696.	3.0	58
187	Lipase-catalyzed transesterification of ethyl formate to octyl formate. Journal of Molecular Catalysis B: Enzymatic, 2014, 105, 7-10.	1.8	13
188	The taming of oxygen: biocatalytic oxyfunctionalisations. Chemical Communications, 2014, 50, 13180-13200.	4.1	99
189	How Green is Biocatalysis? To Calculate is To Know. ChemCatChem, 2014, 6, 930-943.	3.7	165
190	Structure of the NADH-dependent thermostable alcohol dehydrogenase TADH from Thermus sp. ATN1 provides a platform for engineering specificity and improved compatibility with inorganic cofactor-regeneration catalysts. Journal of Molecular Catalysis B: Enzymatic, 2014, 105, 1-6.	1.8	10
191	Pyrococcus furiosus-mediated reduction of conjugated carboxylic acids: Towards using syngas as reductant. Journal of Molecular Catalysis B: Enzymatic, 2014, 103, 52-55.	1.8	12
192	Enantioselective enzymatic synthesis of the α-hydroxy ketone (R)-acetoin from meso-2,3-butanediol. Journal of Molecular Catalysis B: Enzymatic, 2014, 103, 61-66.	1.8	25
193	Electrochemical regeneration of oxidised nicotinamide cofactors in a scalable reactor. Journal of Molecular Catalysis B: Enzymatic, 2014, 103, 94-99.	1.8	38
194	Bioreductions Catalyzed by an Alcohol Dehydrogenase in Nonâ€aqueous Media. ChemCatChem, 2014, 6, 973-976.	3.7	45
195	J. Tao, R. J. Kazlauskas: Biocatalysis for Green Chemistry and Chemical Process Development. Catalysis Letters, 2013, 143, 982-982.	2.6	1
196	Expanding the Scope of Laccaseâ€Mediator Systems. ChemCatChem, 2013, 5, 3027-3032.	3.7	37
197	One-pot combination of enzyme and Pd nanoparticle catalysis for the synthesis of enantiomerically pure 1,2-amino alcohols. Green Chemistry, 2013, 15, 3318.	9.0	75
198	Mimicking Nature: Synthetic Nicotinamide Cofactors for Câ∙€ Bioreduction Using Enoate Reductases. Organic Letters, 2013, 15, 180-183.	4.6	155

#	Article	IF	CITATIONS
199	Synthetic cascades are enabled by combining biocatalysts with artificial metalloenzymes. Nature Chemistry, 2013, 5, 93-99.	13.6	314
200	Access to Lactone Building Blocks via Horse Liver Alcohol Dehydrogenase-Catalyzed Oxidative Lactonization. ACS Catalysis, 2013, 3, 2436-2439.	11.2	71
201	Expression and characterization of the nitrile reductase queF from E. coli. Enzyme and Microbial Technology, 2013, 52, 129-133.	3.2	20
202	More efficient redox biocatalysis by utilising 1,4-butanediol as a â€~smart cosubstrate'. Green Chemistry, 2013, 15, 330.	9.0	56
203	Ionic Liquids: Green Solvents for Chemical Processing. Journal of Chemistry, 2013, 2013, 1-2.	1.9	35
204	Increasing the Productivity of Peroxidaseâ€Catalyzed Oxyfunctionalization: A Case Study on the Potential of Two‣iquidâ€Phase Systems. ChemCatChem, 2013, 5, 565-568.	3.7	42
205	Status of Resonant Diplexer Development for high-power ECRH Applications. EPJ Web of Conferences, 2012, 32, 04008.	0.3	5
206	A biocatalytic redox isomerisation. Chemical Communications, 2012, 48, 6630.	4.1	49
207	A biocatalytic hydrogenation of carboxylic acids. Chemical Communications, 2012, 48, 12056.	4.1	65
208	Ferritin-supported palladium nanoclusters: selective catalysts for aerobic oxidations in water. Chemical Communications, 2012, 48, 5745.	4.1	53
209	Enantioselective Oxidation of Aldehydes Catalyzed by Alcohol Dehydrogenase. Angewandte Chemie - International Edition, 2012, 51, 9914-9917.	13.8	74
210	Enzyme Initiated Radical Polymerizations. Polymers, 2012, 4, 759-793.	4.5	185
211	Towards Recyclable NAD(P)H Regeneration Catalysts. Molecules, 2012, 17, 9835-9841.	3.8	27
212	Chemoenzymatic Reduction of Conjugated CC Double Bonds. ChemCatChem, 2012, 4, 196-199.	3.7	33
213	Enoatreduktasen - Vielversprechende Enzyme auf neuen Wegen. Chemie-Ingenieur-Technik, 2012, 84, 1215-1216.	0.8	0
214	Immobilisation of laccase on Eupergit supports and its application for the removal of endocrine disrupting chemicals in a packed-bed reactor. Biodegradation, 2012, 23, 373-386.	3.0	89
215	Immobilized redox mediators for electrochemical NAD(P)+ regeneration. Applied Microbiology and Biotechnology, 2012, 93, 2251-2264.	3.6	75
216	Are Natural Deep Eutectic Solvents the Missing Link in Understanding Cellular Metabolism and Physiology?. Plant Physiology, 2011, 156, 1701-1705.	4.8	887

#	Article	IF	CITATIONS
217	Enzymatic reductions for the chemist. Green Chemistry, 2011, 13, 2285.	9.0	332
218	Enzyme-mediated oxidations for the chemist. Green Chemistry, 2011, 13, 226-265.	9.0	395
219	Improved esterification activity of Candida rugosa lipase in organic solvent by immobilization as Cross-linked enzyme aggregates (CLEAs). Journal of Molecular Catalysis B: Enzymatic, 2011, 71, 85-89.	1.8	115
220	A Photoenzymatic System for Alcohol Oxidation. ChemCatChem, 2011, 3, 338-342.	3.7	53
221	Specific Photobiocatalytic Oxyfunctionalization Reactions. Angewandte Chemie - International Edition, 2011, 50, 10716-10719.	13.8	124
222	Immobilization of laccase by encapsulation in a sol–gel matrix and its characterization and use for the removal of estrogens. Biotechnology Progress, 2011, 27, 1570-1579.	2.6	59
223	Biocatalytic Redox Reactions for Organic Synthesis: Nonconventional Regeneration Methods. ChemCatChem, 2010, 2, 762-782.	3.7	235
224	On the nature of mutual inactivation between [Cp*Rh(bpy)(H2O)]2+ and enzymes – analysis and potential remedies. Journal of Molecular Catalysis B: Enzymatic, 2010, 63, 149-156.	1.8	96
225	Enzyme engineering for enantioselectivity: from trial-and-error to rational design?. Trends in Biotechnology, 2010, 28, 46-54.	9.3	115
226	Phosphiteâ€driven, [Cp*Rh(bpy)(H ₂ O)] ²⁺ â€catalyzed reduction of nicotinamide and flavin cofactors: characterization and application to promote chemoenzymatic reduction reactions. Applied Organometallic Chemistry, 2010, 24, 380-385.	3.5	25
227	Engineering of Candida antarctica lipase B for hydrolysis of bulky carboxylic acid esters. Journal of Biotechnology, 2010, 150, 474-480.	3.8	59
228	Increasing the synthesis/hydrolysis ratio of aminoacylase 1 by site-directed mutagenesis. Biochimie, 2010, 92, 102-109.	2.6	8
229	A New Regeneration System for Oxidized Nicotinamide Cofactors. Advanced Synthesis and Catalysis, 2009, 351, 1211-1216.	4.3	67
230	Photoenzymatic Reduction of Cĩ \pounds ³ 4C Double Bonds. Advanced Synthesis and Catalysis, 2009, 351, 3279-3286.	4.3	80
231	On the inactivity of Candida antartica lipase B towards strong acids. Journal of Molecular Catalysis B: Enzymatic, 2009, 57, 257-261.	1.8	44
232	Towards [Cpâ^—Rh(bpy)(H2O)]2+-promoted P450 catalysis: Direct regeneration of CytC. Journal of Inorganic Biochemistry, 2009, 103, 313-315.	3.5	27
233	Visible light-driven and chloroperoxidase-catalyzed oxygenation reactions. Chemical Communications, 2009, , 6848.	4.1	115
234	Deazaflavins as mediators in light-driven cytochrome P450 catalyzed hydroxylations. Chemical Communications, 2009, , 7152.	4.1	61

#	Article	IF	CITATIONS
235	Power Combination of Two 140-GHz Gyrotrons and Fast Switching of the Combined Beam. Fusion Science and Technology, 2009, 55, 23-30.	1.1	17
236	ECRH for W7-X: Transmission Losses of High-Power 140-GHz Wave Beams. Fusion Science and Technology, 2009, 55, 16-22.	1.1	9
237	TADH, the thermostable alcohol dehydrogenase from Thermus sp. ATN1: a versatile new biocatalyst for organic synthesis. Applied Microbiology and Biotechnology, 2008, 81, 263-273.	3.6	68
238	Functional expression of porcine aminoacylase 1 in E. coli using a codon optimized synthetic gene and molecular chaperones. Applied Microbiology and Biotechnology, 2008, 81, 721-729.	3.6	9
239	A Robust Protein Host for Anchoring Chelating Ligands and Organocatalysts. ChemBioChem, 2008, 9, 552-564.	2.6	67
240	Lightâ€Ðriven Biocatalytic Oxidation and Reduction Reactions: Scope and Limitations. ChemBioChem, 2008, 9, 565-572.	2.6	102
241	Evaluation of the Laccase from Myceliophthora thermophila as Industrial Biocatalyst for Polymerization Reactions. Macromolecules, 2008, 41, 8520-8524.	4.8	52
242	A Light-Driven Stereoselective Biocatalytic Oxidation. Angewandte Chemie - International Edition, 2007, 46, 2903-2906.	13.8	121
243	Directed evolution of enantioselective hybrid catalysts: a novel concept in asymmetric catalysis. Tetrahedron, 2007, 63, 6404-6414.	1.9	79
244	Non-enzymatic regeneration of nicotinamide and flavin cofactors for monooxygenase catalysis. Trends in Biotechnology, 2006, 24, 163-171.	9.3	142
245	Coupled chemoenzymatic transfer hydrogenation catalysis for enantioselective reduction and oxidation reactions. Tetrahedron: Asymmetry, 2005, 16, 3512-3519.	1.8	45
246	Preparation of Enantiomerically Pure [3]Ferrocenophane-Based Chelate Bis-Phosphane Ligands and Their Use in Asymmetric Alternating Carbon Monoxide/Propene Copolymerization. European Journal of Organic Chemistry, 2005, 2005, 1909-1918.	2.4	43
247	FADH2-Dependence of Tryptophan 7-Halogenase. Advanced Synthesis and Catalysis, 2005, 347, 1163-1167.	4.3	69
248	Direct Electrochemical Regeneration of Monooxygenase Subunits for Biocatalytic Asymmetric Epoxidation. Journal of the American Chemical Society, 2005, 127, 6540-6541.	13.7	93
249	Towards practical biocatalytic Baeyer-Villiger reactions: applying a thermostable enzyme in the gram-scale synthesis of optically-active lactones in a two-liquid-phase system. Beilstein Journal of Organic Chemistry, 2005, 1, 10.	2.2	56
250	Effects of the chain microstructure on the properties of polyketones terpolymers characterized by scanning force microscopy. European Polymer Journal, 2004, 40, 905-916.	5.4	7
251	Bioorganometallic chemistry: biocatalytic oxidation reactions with biomimetic NAD+/NADH co-factors and [Cp*Rh(bpy)H]+ for selective organic synthesis. Journal of Organometallic Chemistry, 2004, 689, 4783-4790.	1.8	123
252	Electrochemical Regeneration of Oxidoreductases for Cell-free Biocatalytic Redox Reactions. Biocatalysis and Biotransformation, 2004, 22, 63-88.	2.0	109

#	Article	IF	CITATIONS
253	Stereospecific Biocatalytic Epoxidation:  The First Example of Direct Regeneration of a FAD-Dependent Monooxygenase for Catalysis. Journal of the American Chemical Society, 2003, 125, 8209-8217.	13.7	158
254	Dielectric relaxation of the alternating terpolymers of ethylene, propylene, and carbon monoxide. Journal of Macromolecular Science - Physics, 2002, 41, 99-116.	1.0	9
255	[Cpâ^—Rh(bpy)(H2O)]2+: a versatile tool for efficient and non-enzymatic regeneration of nicotinamide and flavin coenzymes. Journal of Molecular Catalysis B: Enzymatic, 2002, 19-20, 167-176.	1.8	190
256	The use of enzymes in the chemical industry in Europe. Current Opinion in Biotechnology, 2002, 13, 359-366.	6.6	175
257	Spectra of highly ionized xenon (6–30Ânm) excited in W7-AS plasmas. Applied Physics B: Lasers and Optics, 2001, 73, 59-64.	2.2	5
258	Integrated Biocatalytic Synthesis on Gram Scale: The Highly Enantioselective Preparation of Chiral Oxiranes with Styrene Monooxygenase. Advanced Synthesis and Catalysis, 2001, 343, 732-737.	4.3	121
259	The First Synthetic Application of a Monooxygenase Employing Indirect Electrochemical NADH Regeneration. Angewandte Chemie - International Edition, 2001, 40, 169-171.	13.8	145
260	Measurements of Ohmic Losses of Metallic Reflectors at 140 GHz Using a 3-Mirror Resonator Technique. Journal of Infrared, Millimeter and Terahertz Waves, 2001, 22, 1695-1707.	0.6	44
261	Part I. On the physical characterization of ethene/propene/CO terpolymers: effect of composition. Polymer, 2001, 42, 93-101.	3.8	14
262	Integrated Biocatalytic Synthesis on Gram Scale: The Highly Enantioselective Preparation of Chiral Oxiranes with Styrene Monooxygenase. Advanced Synthesis and Catalysis, 2001, 343, 732-737.	4.3	1
263	Towards Biocatalytic Oxidation of Secondary Alcohols to Carbonyl Products of Relevance for Flavors and Fragrances. Frontiers in Catalysis, 0, 2, .	3.9	4