
Israel Fernandez-Cade

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9489489/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	International stroke genetics consortium recommendations for studies of genetics of stroke outcome and recovery. International Journal of Stroke, 2022, 17, 260-268.	5.9	13
2	Multi-ancestry GWAS reveals excitotoxicity associated with outcome after ischaemic stroke. Brain, 2022, 145, 2394-2406.	7.6	15
3	Biological Age Acceleration Is Lower in Women With Ischemic Stroke Compared to Men. Stroke, 2022, 53, 2320-2330.	2.0	11
4	ICA1L Is Associated with Small Vessel Disease: A Proteome-Wide Association Study in Small Vessel Stroke and Intracerebral Haemorrhage. International Journal of Molecular Sciences, 2022, 23, 3161.	4.1	11
5	Novel genes and sex differences in COVID-19 severity. Human Molecular Genetics, 2022, 31, 3789-3806.	2.9	38
6	Genome-Wide Studies in Ischaemic Stroke: Are Genetics Only Useful for Finding Genes?. International Journal of Molecular Sciences, 2022, 23, 6840.	4.1	3
7	DNA Methylation and Ischemic Stroke Risk: An Epigenome-Wide Association Study. Thrombosis and Haemostasis, 2022, 122, 1767-1778.	3.4	12
8	Early Neurological Change After Ischemic Stroke Is Associated With 90-Day Outcome. Stroke, 2021, 52, 132-141.	2.0	36
9	Single nucleotide variations in <i>ZBTB46</i> are associated with post-thrombolytic parenchymal haematoma. Brain, 2021, 144, 2416-2426.	7.6	10
10	Genome-wide transcriptome study in skin biopsies reveals an association of E2F4 with cadasil and cognitive impairment. Scientific Reports, 2021, 11, 6846.	3.3	5
11	Epigenome-wide association study of COVID-19 severity with respiratory failure. EBioMedicine, 2021, 66, 103339.	6.1	90
12	Genetic basis of lacunar stroke: a pooled analysis of individual patient data and genome-wide association studies. Lancet Neurology, The, 2021, 20, 351-361.	10.2	95
13	Contribution of "Omic―Studies to the Understanding of Cadasil. A Systematic Review. International Journal of Molecular Sciences, 2021, 22, 7357.	4.1	11
14	RP11-362K2.2:RP11-767I20.1 Genetic Variation Is Associated with Post-Reperfusion Therapy Parenchymal Hematoma. A GWAS Meta-Analysis. Journal of Clinical Medicine, 2021, 10, 3137.	2.4	6
15	Causal Effect of MMP-1 (Matrix Metalloproteinase-1), MMP-8, and MMP-12 Levels on Ischemic Stroke. Stroke, 2021, 52, e316-e320.	2.0	18
16	Mapping the human genetic architecture of COVID-19. Nature, 2021, 600, 472-477.	27.8	640
17	Using Human Genetics to Understand Mechanisms in Ischemic Stroke Outcome: From Early Brain Injury to Long-Term Recovery. Stroke, 2021, 52, 3013-3024.	2.0	14
18	Sleep/wake cycle alterations as a cause of neurodegenerative diseases: A Mendelian randomization study. Neurobiology of Aging, 2021, 106, 320.e1-320.e12.	3.1	22

ISRAEL FERNANDEZ-CADE

#	Article	IF	CITATIONS
19	Age-dependent impact of the major common genetic risk factor for COVID-19 on severity and mortality. Journal of Clinical Investigation, 2021, 131, .	8.2	72
20	Pharmacogenetics studies in stroke patients treated with rtPA: aÂreview of the most interesting findings. Pharmacogenomics, 2021, 22, 1091-1097.	1.3	4
21	Leveraging Genetic Data to Elucidate the Relationship Between COVIDâ€19 and Ischemic Stroke. Journal of the American Heart Association, 2021, 10, e022433.	3.7	11
22	Cardioembolic Ischemic Stroke Gene Expression Fingerprint in Blood: a Systematic Review and Verification Analysis. Translational Stroke Research, 2020, 11, 326-336.	4.2	14
23	Effectiveness of Platelet Function Analysis-Guided Aspirin and/or Clopidogrel Therapy in Preventing Secondary Stroke: A Systematic Review and Meta-Analysis. Journal of Clinical Medicine, 2020, 9, 3907.	2.4	7
24	Genomewide Association Study of Platelet Reactivity and Cardiovascular Response in Patients Treated With Clopidogrel: A Study by the International Clopidogrel Pharmacogenomics Consortium. Clinical Pharmacology and Therapeutics, 2020, 108, 1067-1077.	4.7	32
25	A parsimonious score with a free web tool for predicting disability after an ischemic stroke: the Parsifal Score. Journal of Neurology, 2020, 267, 2871-2880.	3.6	0
26	Platelet function/reactivity testing and prediction of risk of recurrent vascular events and outcomes after TIA or ischaemic stroke: systematic review and meta-analysis. Journal of Neurology, 2020, 267, 3021-3037.	3.6	16
27	Identification of 20 novel loci associated with ischaemic stroke. Epigenome-wide association study. Epigenetics, 2020, 15, 988-997.	2.7	22
28	Genome-Wide Association Study of VKORC1 and CYP2C9 on acenocoumarol dose, stroke recurrence and intracranial haemorrhage in Spain. Scientific Reports, 2020, 10, 2806.	3.3	7
29	Genetically Elevated <scp>LDL</scp> Associates with Lower Risk of Intracerebral Hemorrhage. Annals of Neurology, 2020, 88, 56-66.	5.3	35
30	DNA methylation of MMPs and TIMPs in atherothrombosis process in carotid plaques and blood tissues. Oncotarget, 2020, 11, 905-912.	1.8	4
31	Validation of a clinical-genetics score to predict hemorrhagic transformations after rtPA. Neurology, 2019, 93, e851-e863.	1.1	10
32	Genome-wide association study of cerebral small vessel disease reveals established and novel loci. Brain, 2019, 142, 3176-3189.	7.6	76
33	Genetically Determined Risk of Depression and Functional Outcome After Ischemic Stroke. Stroke, 2019, 50, 2219-2222.	2.0	18
34	Genome-Wide Association Study of White Blood Cell Counts in Patients With Ischemic Stroke. Stroke, 2019, 50, 3618-3621.	2.0	13
35	Association of Apolipoprotein E With Intracerebral Hemorrhage Risk by Race/Ethnicity. JAMA Neurology, 2019, 76, 480.	9.0	43
36	Genome-Wide Association Transethnic Meta-Analyses Identifies Novel Associations Regulating Coagulation Factor VIII and von Willebrand Factor Plasma Levels. Circulation, 2019, 139, 620-635.	1.6	102

ISRAEL FERNANDEZ-CADE

#	Article	IF	CITATIONS
37	<i>PATJ</i> Low Frequency Variants Are Associated With Worse Ischemic Stroke Functional Outcome. Circulation Research, 2019, 124, 114-120.	4.5	49
38	Clinical Variables and Genetic Risk Factors Associated with the Acute Outcome of Ischemic Stroke: A Systematic Review. Journal of Stroke, 2019, 21, 276-289.	3.2	27
39	Biological Age is a predictor of mortality in Ischemic Stroke. Scientific Reports, 2018, 8, 4148.	3.3	53
40	DNA Methylation in Stroke. Update of Latest Advances. Computational and Structural Biotechnology Journal, 2018, 16, 1-5.	4.1	29
41	Multiancestry genome-wide association study of 520,000 subjects identifies 32 loci associated with stroke and stroke subtypes. Nature Genetics, 2018, 50, 524-537.	21.4	1,124
42	GRECOS Project (Genotyping Recurrence Risk of Stroke). Stroke, 2017, 48, 1147-1153.	2.0	23
43	Biological age is better than chronological as predictor of 3-month outcome in ischemic stroke. Neurology, 2017, 89, 830-836.	1.1	57
44	Role of TRAF3 in neurological and cardiovascular diseases: an overview of recent studies. Biomolecular Concepts, 2017, 8, 197-202.	2.2	9
45	Genetic variants influencing elevated myeloperoxidase levels increase risk of stroke. Brain, 2017, 140, 2663-2672.	7.6	12
46	Systematic Review of Cysteine-Sparing NOTCH3 Missense Mutations in Patients with Clinical Suspicion of CADASIL. International Journal of Molecular Sciences, 2017, 18, 1964.	4.1	62
47	Whole exome sequencing analysis reveals TRPV3 as a risk factor for cardioembolic stroke/subtitle. Thrombosis and Haemostasis, 2016, 116, 1165-1771.	3.4	6
48	<i>TRAF3</i> Epigenetic Regulation Is Associated With Vascular Recurrence in Patients With Ischemic Stroke, 2016, 47, 1180-1186.	2.0	46
49	Automated quantification of cerebral edema following hemispheric infarction: Application of a machine-learning algorithm to evaluate CSF shifts on serial head CTs. NeuroImage: Clinical, 2016, 12, 673-680.	2.7	49
50	Genetic variants inCETPincrease risk of intracerebral hemorrhage. Annals of Neurology, 2016, 80, 730-740.	5.3	33
51	<i>PPM1A</i> Methylation Is Associated With Vascular Recurrence in Aspirin-Treated Patients. Stroke, 2016, 47, 1926-1929.	2.0	28
52	Candidate-gene association study searching for genetic factors involved in migraine chronification. Cephalalgia, 2015, 35, 500-507.	3.9	20
53	NURR1 Involvement in Recombinant Tissue-Type Plasminogen Activator Treatment Complications After Ischemic Stroke. Stroke, 2015, 46, 477-484.	2.0	14
54	La resistencia en el tratamiento secundario del ictus isquémico, el componente genético en la respuesta a ácido acetilsalicÃłico y clopidogrel. NeurologÃa, 2015, 30, 566-573.	0.7	6

#	Article	IF	CITATIONS
55	Global DNA Methylation of Ischemic Stroke Subtypes. PLoS ONE, 2014, 9, e96543.	2.5	46
56	Aproximación al conocimiento de las bases genéticas del ictus. Consorcio español de genética del ictus. NeurologÃa, 2014, 29, 560-566.	0.7	4
57	Meta-analysis of Genome-wide Association Studies Identifies 1q22 as a Susceptibility Locus for Intracerebral Hemorrhage. American Journal of Human Genetics, 2014, 94, 511-521.	6.2	235
58	Genes involved in hemorrhagic transformations that follow recombinant t-PA treatment in stroke patients. Pharmacogenomics, 2013, 14, 495-504.	1.3	18
59	Role of the MMP9 Gene in Hemorrhagic Transformations After Tissue-Type Plasminogen Activator Treatment in Stroke Patients. Stroke, 2012, 43, 1398-1400.	2.0	13
60	<i>IL1B</i> and <i>VWF</i> Variants Are Associated With Fibrinolytic Early Recanalization in Patients With Ischemic Stroke. Stroke, 2012, 43, 2659-2665.	2.0	28
61	A predictive clinical–genetic model of tissue plasminogen activator response in acute ischemic stroke. Annals of Neurology, 2012, 72, 716-729.	5.3	39
62	Leukoaraiosis is associated with genes regulating blood-brain barrier homeostasis in ischaemic stroke patients. European Journal of Neurology, 2011, 18, 826-835.	3.3	24
63	The I/D polymorphism of the ACE1 gene is not associated with ischaemic stroke in Spanish individuals. European Journal of Neurology, 2010, 17, 1390-1392.	3.3	18
64	Lower concentrations of thrombin-antithrombin complex (TAT) correlate to higher recanalisation rates among ischaemic stroke patients treated with t-PA. Thrombosis and Haemostasis, 2009, 102, 759-764.	3.4	19
65	Genetics of stroke: a review of recent advances. Expert Review of Molecular Diagnostics, 2008, 8, 495-513.	3.1	49
66	Influence of thrombinâ€activatable fibrinolysis inhibitor and plasminogen activator inhibitorâ€1 gene polymorphisms on tissueâ€type plasminogen activatorâ€induced recanalization in ischemic stroke patients. Journal of Thrombosis and Haemostasis, 2007, 5, 1862-1868.	3.8	49
67	ACE gene polymorphisms influence t-PA-induced brain vessel reopening following ischemic stroke. Neuroscience Letters, 2006, 398, 167-171.	2.1	23
68	Role of Fibrinogen Levels and Factor XIII V34L Polymorphism in Thrombolytic Therapy in Stroke Patients. Stroke, 2006, 37, 2288-2293.	2.0	54
69	Splicing mosaic of the myophosphorylase gene due to a silent mutation in McArdle disease. Neurology, 2003, 61, 1432-1434.	1.1	42