
J Pedro Simas

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/948925/publications.pdf Version: 2024-02-01

I DEDDO SIMAS

#	Article	IF	CITATIONS
1	Endemic SARS-CoV-2 will maintain post-pandemic immunity. Nature Reviews Immunology, 2021, 21, 131-132.	22.7	60
2	MLL1 is regulated by KSHV LANA and is important for virus latency. Nucleic Acids Research, 2021, 49, 12895-12911.	14.5	6
3	Vaccine protection against murid herpesvirusâ€4 is maintained when the priming virus lacks known latency genes. Immunology and Cell Biology, 2020, 98, 67-78.	2.3	10
4	Seroprevalence of antiâ€5ARSâ€CoVâ€2 antibodies in COVIDâ€19 patients and healthy volunteers up to 6 months post disease onset. European Journal of Immunology, 2020, 50, 2025-2040.	2.9	188
5	KSHV LANA acetylation-selective acidic domain reader sequence mediates virus persistence. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 22443-22451.	7.1	12
6	MicroRNA-181a regulates IFN-Î ³ expression in effector CD8+ T cell differentiation. Journal of Molecular Medicine, 2020, 98, 309-320.	3.9	15
7	Gammaherpesvirus Colonization of the Spleen Requires Lytic Replication in B Cells. Journal of Virology, 2018, 92, .	3.4	11
8	In Vivo Persistence of Chimeric Virus after Substitution of the Kaposi's Sarcoma-Associated Herpesvirus LANA DNA Binding Domain with That of Murid Herpesvirus 4. Journal of Virology, 2018, 92,	3.4	9
9	GLUT1-mediated glucose uptake plays a crucial role during <i>Plasmodium</i> hepatic infection. Cellular Microbiology, 2017, 19, e12646.	2.1	67
10	Cross-species conservation of episome maintenance provides a basis for in vivo investigation of Kaposi's sarcoma herpesvirus LANA. PLoS Pathogens, 2017, 13, e1006555.	4.7	19
11	Type I Interferons and NK Cells Restrict Gammaherpesvirus Lymph Node Infection. Journal of Virology, 2016, 90, 9046-9057.	3.4	12
12	Response to commentary on "ldentification of H-type BSE in Portugal― Prion, 2016, 10, 343-343.	1.8	0
13	Latency-Associated Nuclear Antigen E3 Ubiquitin Ligase Activity Impacts Gammaherpesvirus-Driven Germinal Center B Cell Proliferation. Journal of Virology, 2016, 90, 7667-7683.	3.4	6
14	Effector Î ³ δT Cell Differentiation Relies on Master but Not Auxiliary Th Cell Transcription Factors. Journal of Immunology, 2016, 196, 3642-3652.	0.8	65
15	Murid Gammaherpesvirus Latency-Associated Protein M2 Promotes the Formation of Conjugates between Transformed B Lymphoma Cells and T Helper Cells. PLoS ONE, 2015, 10, e0142540.	2.5	2
16	The Kaposi Sarcoma Herpesvirus Latency-associated Nuclear Antigen DNA Binding Domain Dorsal Positive Electrostatic Patch Facilitates DNA Replication and Episome Persistence. Journal of Biological Chemistry, 2015, 290, 28084-28096.	3.4	4
17	KSHV but not MHV-68 LANA induces a strong bend upon binding to terminal repeat viral DNA. Nucleic Acids Research, 2015, 43, gkv987.	14.5	15
18	Identification of H-type BSE in Portugal. Prion, 2015, 9, 22-28.	1.8	4

J PEDRO SIMAS

#	Article	IF	CITATIONS
19	Establishment of Murine Gammaherpesvirus Latency in B Cells Is Not a Stochastic Event. PLoS Pathogens, 2014, 10, e1004269.	4.7	15
20	Defining Immune Engagement Thresholds for In Vivo Control of Virus-Driven Lymphoproliferation. PLoS Pathogens, 2014, 10, e1004220.	4.7	4
21	Maternal retinoids control type 3 innate lymphoid cells and set the offspring immunity. Nature, 2014, 508, 123-127.	27.8	321
22	Anthracyclines Induce DNA Damage Response-Mediated Protection against Severe Sepsis. Immunity, 2013, 39, 874-884.	14.3	131
23	Crystal Structure of the Gamma-2 Herpesvirus LANA DNA Binding Domain Identifies Charged Surface Residues Which Impact Viral Latency. PLoS Pathogens, 2013, 9, e1003673.	4.7	33
24	Stabilization of Myc through Heterotypic Poly-Ubiquitination by mLANA Is Critical for Î ³ -Herpesvirus Lymphoproliferation. PLoS Pathogens, 2013, 9, e1003554.	4.7	11
25	Role of Src Homology Domain Binding in Signaling Complexes Assembled by the Murid γ-Herpesvirus M2 Protein. Journal of Biological Chemistry, 2013, 288, 3858-3870.	3.4	11
26	Murine Gammaherpesvirus 68 LANA Acts on Terminal Repeat DNA To Mediate Episome Persistence. Journal of Virology, 2012, 86, 11863-11876.	3.4	33
27	T Cell Apoptosis and Induction of Foxp3+ Regulatory T Cells Underlie the Therapeutic Efficacy of CD4 Blockade in Experimental Autoimmune Encephalomyelitis. Journal of Immunology, 2012, 189, 1680-1688.	0.8	12
28	CD8+ T Cells from Mice Transnuclear for a TCR that Recognizes a Single H-2Kb-Restricted MHV68 Epitope Derived from gB-ORF8 Help Control Infection. Cell Reports, 2012, 1, 461-471.	6.4	23
29	Putative emergence of classical scrapie in a background of enzootic atypical scrapie. Journal of General Virology, 2010, 91, 1646-1650.	2.9	12
30	Cutting Edge: Adaptive Versus Innate Receptor Signals Selectively Control the Pool Sizes of Murine IFN-γ– or IL-17–Producing γδT Cells upon Infection. Journal of Immunology, 2010, 185, 6421-6425.	0.8	98
31	Termination of NF-κB activity through a gammaherpesvirus protein that assembles an EC5S ubiquitin-ligase. EMBO Journal, 2009, 28, 1283-1295.	7.8	54
32	In vivo imaging of murid herpesvirus-4 infection. Journal of General Virology, 2009, 90, 21-32.	2.9	71
33	Parainfluenza virus 5 genomes are located in viral cytoplasmic bodies whilst the virus dismantles the interferon-induced antiviral state of cells. Journal of General Virology, 2009, 90, 2147-2156.	2.9	34
34	Immune control of mammalian gamma-herpesviruses: lessons from murid herpesvirus-4. Journal of General Virology, 2009, 90, 2317-2330.	2.9	45
35	A Single CD8+ T Cell Epitope Sets the Long-Term Latent Load of a Murid Herpesvirus. PLoS Pathogens, 2008, 4, e1000177.	4.7	17
36	The Gammaherpesvirus m2 Protein Manipulates the Fyn/Vav Pathway through a Multidocking Mechanism of Assembly. PLoS ONE, 2008, 3, e1654.	2.5	29

J PEDRO SIMAS

#	Article	IF	CITATIONS
37	Type I Interferon Inhibition and Dendritic Cell Activation during Gammaherpesvirus Respiratory Infection. Journal of Virology, 2007, 81, 9778-9789.	3.4	24
38	Activation of Vav by the Gammaherpesvirus M2 Protein Contributes to the Establishment of Viral Latency in B Lymphocytes. Journal of Virology, 2006, 80, 6123-6135.	3.4	45
39	Intrabodies targeting the Kaposi sarcoma–associated herpesvirus latency antigen inhibit viral persistence in lymphoma cells. Blood, 2005, 106, 3797-3802.	1.4	34
40	Murine Î ³ -Herpesvirus 68 Latency Protein M2 Binds to Vav Signaling Proteins and Inhibits B-cell Receptor-induced Cell Cycle Arrest and Apoptosis in WEHI-231 B Cells. Journal of Biological Chemistry, 2005, 280, 37310-37318.	3.4	24
41	Murine gammaherpesvirus 68 bcl-2 homologue contributes to latency establishment in vivo. Journal of General Virology, 2005, 86, 31-40.	2.9	42
42	Identification of putative atypical scrapie in sheep in Portugal. Journal of General Virology, 2004, 85, 3487-3491.	2.9	91
43	The M2 gene product of murine gammaherpesvirus 68 is required for efficient colonization of splenic follicles but is not necessary for expansion of latently infected germinal centre B cells. Journal of General Virology, 2004, 85, 2789-2797.	2.9	30
44	Selective Gene Expression of Latent Murine Gammaherpesvirus 68 in B Lymphocytes. Journal of Virology, 2003, 77, 7308-7318.	3.4	113
45	ORF73 of murine herpesvirus-68 is critical for the establishment and maintenance of latency. Journal of General Virology, 2003, 84, 3405-3416.	2.9	98
46	Disruption of CCL21-Induced Chemotaxis In Vitro and In Vivo by M3, a Chemokine-Binding Protein Encoded by Murine Gammaherpesvirus 68. Journal of Virology, 2003, 77, 624-630.	3.4	62
47	Scrapie genetic susceptibility in Portuguese sheep breeds. Veterinary Record, 2003, 153, 508.	0.3	5
48	K3-mediated evasion of CD8+ T cells aids amplification of a latent Î ³ -herpesvirus. Nature Immunology, 2002, 3, 733-740.	14.5	152
49	A Secreted Chemokine Binding Protein Encoded by Murine Gammaherpesvirus-68 Is Necessary for the Establishment of a Normal Latent Load. Journal of Experimental Medicine, 2001, 194, 301-312.	8.5	99
50	A Broad Spectrum Secreted Chemokine Binding Protein Encoded by a Herpesvirus. Journal of Experimental Medicine, 2000, 191, 573-578.	8.5	214
51	Murine gammaherpesvirus 68: a model for the study of gammaherpesvirus pathogenesis. Trends in Microbiology, 1998, 6, 276-282.	7.7	207