John P Lowe

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9489019/publications.pdf Version: 2024-02-01

414414 471509 1,054 37 17 32 citations h-index g-index papers 39 39 39 1357 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	The structures of ring-expanded NHC supported copper(<scp>i</scp>) triphenylstannyls and their phenyl transfer reactivity towards heterocumulenes. Dalton Transactions, 2022, 51, 831-835.	3.3	3
2	Zincâ€Promoted ZnMe/ZnPh Exchange in Eightâ€Coordinate [Ru(PPh ₃) ₂ (ZnMe) ₄ H ₂]. Angewandte Chemie - International Edition, 2022, , .	13.8	5
3	Zincâ€Promoted ZnMe/ZnPh Exchange in Eightâ€Coordinate [Ru(PPh ₃) ₂ (ZnMe) ₄ H ₂]. Angewandte Chemie, 2022, 134,	2.0	1
4	A Terphenyl Supported Dioxophosphorane Dimer: the Light Congener of Lawesson's and Woollins' Reagents. Chemistry - A European Journal, 2022, , .	3.3	2
5	Effects of g-C ₃ N ₄ Heterogenization into Intrinsically Microporous Polymers on the Photocatalytic Generation of Hydrogen Peroxide. ACS Applied Materials & Interfaces, 2022, 14, 19938-19948.	8.0	17
6	Convenient and accurate insight into solution-phase equilibria from FlowNMR titrations. Reaction Chemistry and Engineering, 2022, 7, 2009-2024.	3.7	3
7	A Copper(I) Platform for One-Pot P–H Bond Formation and Hydrophosphination of Heterocumulenes. ACS Catalysis, 2022, 12, 8214-8219.	11.2	8
8	Multi-nuclear, high-pressure, <i>operando</i> FlowNMR spectroscopic study of Rh/PPh ₃ – catalysed hydroformylation of 1-hexene. Faraday Discussions, 2021, 229, 422-442.	3.2	13
9	Engineering aspects of FlowNMR spectroscopy setups for online analysis of solution-phase processes. Reaction Chemistry and Engineering, 2021, 6, 1548-1573.	3.7	15
10	[Ni(NHC) ₂] as a Scaffold for Structurally Characterized <i>trans</i> [Hâ^'Niâ^'PR ₂] and <i>trans</i> [R ₂ Pâ^'Niâ^'PR ₂] Complexes. Chemistry - A European Journal, 2021, 27, 13221-13234.	3.3	15
11	Effective electroosmotic transport of water in an intrinsically microporous polyamine (PIM-EA-TB). Electrochemistry Communications, 2021, 130, 107110.	4.7	5
12	A stable ring-expanded NHC-supported copper boryl and its reactivity towards heterocumulenes. Dalton Transactions, 2021, 50, 16336-16342.	3.3	8
13	Does the Configuration at the Metal Matter in Noyori–Ikariya Type Asymmetric Transfer Hydrogenation Catalysts?. ACS Catalysis, 2021, 11, 13649-13659.	11.2	24
14	Bonding and Reactivity of a Pair of Neutral and Cationic Heterobimetallic RuZn2 Complexes. Inorganic Chemistry, 2021, 60, 16256-16265.	4.0	7
15	The first ring-expanded NHC–copper(<scp>i</scp>) phosphides as catalysts in the highly selective hydrophosphination of isocyanates. Chemical Communications, 2020, 56, 13359-13362.	4.1	27
16	Zn-Promoted C–H Reductive Elimination and H ₂ Activation via a Dual Unsaturated Heterobimetallic Ru–Zn Intermediate. Journal of the American Chemical Society, 2020, 142, 6340-6349.	13.7	34
17	Kinetics of Asymmetric Transfer Hydrogenation, Catalyst Deactivation, and Inhibition with Noyori Complexes As Revealed by Real-Time High-Resolution FlowNMR Spectroscopy. ACS Catalysis, 2019, 9, 2079-2090.	11.2	42
18	Insight into catalyst speciation and hydrogen co-evolution during enantioselective formic acid-driven transfer hydrogenation with bifunctional ruthenium complexes from multi-technique <i>operando</i> reaction monitoring. Faraday Discussions, 2019, 220, 45-57.	3.2	19

John P Lowe

#	Article	IF	CITATIONS
19	Long Wavelength TCF-Based Fluorescent Probe for the Detection of Alkaline Phosphatase in Live Cells. Frontiers in Chemistry, 2019, 7, 255.	3.6	30
20	Triphasic Nature of Polymers of Intrinsic Microporosity Induces Storage and Catalysis Effects in Hydrogen and Oxygen Reactivity at Electrode Surfaces. ChemElectroChem, 2019, 6, 252-259.	3.4	30
21	Online monitoring of a photocatalytic reaction by real-time high resolution FlowNMR spectroscopy. Chemical Communications, 2018, 54, 30-33.	4.1	31
22	C–F Bond Activation of P(C6F5)3 by Ruthenium Dihydride Complexes: Isolation and Reactivity of the "Missing―Ru(PPh3)3H(halide) Complex, Ru(PPh3)3HF. Inorganic Chemistry, 2018, 57, 13749-13760.	4.0	10
23	Catalytic Hydrodefluorination of Fluoroarenes Using Ru(IMe4)2L2H2 (IMe4 =) Tj ETQq1 1 0.784314 rgBT /Overloo 36, 2308-2316.	ck 10 Tf 5(2.3) 587 Td (1 17
24	A Protocol for NMR Analysis of the Enantiomeric Excess of Chiral Diols Using an Achiral Diboronic Acid Template. Journal of Organic Chemistry, 2016, 81, 6795-6799.	3.2	14
25	Hydrophosphination of Unactivated Alkenes and Alkynes Using Iron(II): Catalysis and Mechanistic Insight. ACS Catalysis, 2016, 6, 7892-7897.	11.2	48
26	Practical aspects of real-time reaction monitoring using multi-nuclear high resolution FlowNMR spectroscopy. Catalysis Science and Technology, 2016, 6, 8406-8417.	4.1	68
27	Activation of H ₂ over the Ruâ^'Zn Bond in the Transition Metalâ^'Lewis Acid Heterobimetallic Species [Ru(IPr) ₂ (CO)ZnEt] ⁺ . Journal of the American Chemical Society, 2016, 138, 11081-11084.	13.7	59
28	Aerosol-assisted CVD of SnO from stannous alkoxide precursors. Dalton Transactions, 2016, 45, 18252-18258.	3.3	15
29	Alkalineâ€Earthâ€Promoted CO Homologation and Reductive Catalysis. Angewandte Chemie - International Edition, 2015, 54, 10009-10011.	13.8	71
30	Metal influence on the iso- and hetero-selectivity of complexes of bipyrrolidine derived salan ligands for the polymerisation of rac-lactide. Chemical Science, 2015, 6, 5034-5039.	7.4	90
31	A water-soluble boronate-based fluorescent probe for the selective detection of peroxynitrite and imaging in living cells. Chemical Science, 2014, 5, 3368.	7.4	205
32	Rh–FHF and Rh–F Complexes Containing Small <i>N</i> -Alkyl Substituted Six-Membered Ring N-Heterocyclic Carbenes. Organometallics, 2014, 33, 1986-1995.	2.3	23
33	NMR cryoporometry characterisation studies of the relation between drug release profile and pore structural evolution of polymeric nanoparticles. International Journal of Pharmaceutics, 2014, 469, 146-158.	5.2	27
34	Synthesis and Small Molecule Reactivity of <i>trans</i> -Dihydride Isomers of Ru(NHC) ₂ (PPh ₃) ₂ H ₂ (NHC = N-Heterocyclic Carbene). Organometallics, 2013, 32, 4927-4937.	2.3	22
35	MRI and PCSE NMR Studies of Long-range, Pore-pore Interaction Effects in Gas Adsorption. , 2011, , .		0

36 Determination of the Spatial Location of Coke in Catalysts by a Novel NMR Approach., 2011, , .

#	Article	IF	CITATIONS
37	Fundamental studies of gas sorption within mesopores situated amidst an inter-connected, irregular network. Adsorption, 2008, 14, 289-307.	3.0	16