Chuanlun Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9488732/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A holistic genome dataset of bacteria, archaea and viruses of the Pearl River estuary. Scientific Data, 2022, 9, 49.	2.4	12
2	Global scale production of brGDGTs by benthic marine bacteria: Implication for developing ocean bottom environmental proxies. Global and Planetary Change, 2022, 211, 103783.	1.6	9
3	In situ identification of environmental microorganisms with Raman spectroscopy. Environmental Science and Ecotechnology, 2022, 11, 100187.	6.7	20
4	Spectral characteristics of dissolved organic matter in sediment pore water from Pearl River Estuary. Science China Earth Sciences, 2021, 64, 52-61.	2.3	4
5	Spatiotemporal distribution and source variations of hydrocarbons in surface sediments from the Pearl River Estuary, Southern China. Journal of Soils and Sediments, 2021, 21, 499-511.	1.5	7
6	Anomalous Phylogenetic Behavior of Ribosomal Proteins in Metagenome-Assembled Asgard Archaea. Genome Biology and Evolution, 2021, 13, .	1.1	18
7	The Evolution Pathway of Ammonia-Oxidizing Archaea Shaped by Major Geological Events. Molecular Biology and Evolution, 2021, 38, 3637-3648.	3.5	33
8	Vertical Stratification of Dissolved Organic Matter Linked to Distinct Microbial Communities in Subtropic Estuarine Sediments. Frontiers in Microbiology, 2021, 12, 697860.	1.5	12
9	Estuarine gradients dictate spatiotemporal variations of microbiome networks in the Chesapeake Bay. Environmental Microbiomes, 2021, 16, 22.	2.2	18
10	Interactions Between Marine Group II Archaea and Phytoplankton Revealed by Population Correlations in the Northern Coast of South China Sea. Frontiers in Microbiology, 2021, 12, 785532.	1.5	6
11	Editorial: Ecology, Metabolism and Evolution of Archaea-Perspectives From Proceedings of the International Workshop on Geo-Omics of Archaea. Frontiers in Microbiology, 2021, 12, 827229.	1.5	3
12	Classification and Identification of Archaea Using Single-Cell Raman Ejection and Artificial Intelligence: Implications for Investigating Uncultivated Microorganisms. Analytical Chemistry, 2021, 93, 17012-17019.	3.2	12
13	Population dynamics of methanogens and methanotrophs along the salinity gradient in Pearl River Estuary: implications for methane metabolism. Applied Microbiology and Biotechnology, 2020, 104, 1331-1346.	1.7	34
14	Phylogenetic analyses with systematic taxon sampling show that mitochondria branch within Alphaproteobacteria. Nature Ecology and Evolution, 2020, 4, 1213-1219.	3.4	75
15	Distinct Distribution of Archaea From Soil to Freshwater to Estuary: Implications of Archaeal Composition and Function in Different Environments. Frontiers in Microbiology, 2020, 11, 576661.	1.5	16
16	Impact of Terrestrial Input on Deep-Sea Benthic Archaeal Community Structure in South China Sea Sediments. Frontiers in Microbiology, 2020, 11, 572017.	1.5	4
17	Niche specificity and potential terrestrial organic carbon utilization of benthic Bathyarchaeota in a eutrophic subtropic estuarine system. Chemical Geology, 2020, 556, 119839.	1.4	10
18	Spatial and temporal variations of bacterioplankton in the Chesapeake Bay: A reâ€examination with highâ€throughput sequencing analysis. Limnology and Oceanography, 2020, 65, 3032-3045.	1.6	21

#	Article	IF	CITATIONS
19	In-House Standard Method for Molecular Characterization of Dissolved Organic Matter by FT-ICR Mass Spectrometry. ACS Omega, 2020, 5, 11730-11736.	1.6	128
20	Establishing a terrestrial proxy based on fluorescent dissolved organic matter from sediment pore waters in the East China Sea. Water Research, 2020, 182, 116005.	5.3	26
21	Marine Group II Euryarchaeota Contribute to the Archaeal Lipid Pool in Northwestern Pacific Ocean Surface Waters. Frontiers in Microbiology, 2020, 11, 1034.	1.5	16
22	Alternative strategies of nutrient acquisition and energy conservation map to the biogeography of marine ammonia-oxidizing archaea. ISME Journal, 2020, 14, 2595-2609.	4.4	62
23	The Distribution of Bathyarchaeota in Surface Sediments of the Pearl River Estuary Along Salinity Gradient. Frontiers in Microbiology, 2020, 11, 285.	1.5	30
24	Lipidomics in archaeal membrane adaptation to environmental stresses and growth conditions: A review of culture-based physiological studies. Science China Earth Sciences, 2020, 63, 790-807.	2.3	5
25	Contrasting bacterial and archaeal distributions reflecting different geochemical processes in a sediment core from the Pearl River Estuary. AMB Express, 2020, 10, 16.	1.4	18
26	Active Anaerobic Archaeal Methanotrophs in Recently Emerged Cold Seeps of Northern South China Sea. Frontiers in Microbiology, 2020, 11, 612135.	1.5	10
27	Cross shelf transport of terrigenous organic matter in surface sediments from outer shelf to Okinawa Trough in East China Sea. Journal of Marine Systems, 2019, 199, 103224.	0.9	16
28	Spatiotemporal variation of organic geochemical properties since the mid-Miocene in the deep South China Sea (IODP Expedition 349). Journal of Asian Earth Sciences, 2019, 183, 103961.	1.0	3
29	Origin and preservation of archaeal intact polar tetraether lipids in deeply buried sediments from the South China Sea. Deep-Sea Research Part I: Oceanographic Research Papers, 2019, 152, 103107.	0.6	3
30	Changes in archaeal ether lipid composition in response to agriculture alternation in ancient and modern paddy soils. Organic Geochemistry, 2019, 138, 103912.	0.9	1
31	Diverse biological sources of core and intact polar isoprenoid GDGTs in terrace soils from southwest of China: Implications for their use as environmental proxies. Chemical Geology, 2019, 522, 108-120.	1.4	11
32	Distributions and Sources of Glycerol Dialkyl Glycerol Tetraethers in Sediment Cores From the Mariana Subduction Zone. Journal of Geophysical Research G: Biogeosciences, 2019, 124, 857-869.	1.3	11
33	Stratification of dissolved organic matter in the upper 2000â€ ⁻ m water column at the Mariana Trench. Science of the Total Environment, 2019, 668, 1222-1231.	3.9	26
34	Impacts of Freshwater and Seawater Mixing on the Production and Decay of Virioplankton in a Subtropical Estuary. Microbial Ecology, 2019, 78, 843-854.	1.4	16
35	Archaea, the tree of life, and cellular evolution in eukaryotes. Science China Earth Sciences, 2019, 62, 489-506.	2.3	5
36	Tectonomicrobiology: A new paradigm for geobiological research. Science China Earth Sciences, 2018, 61, 494-498.	2.3	1

#	Article	IF	CITATIONS
37	Branched GDGT production at elevated temperatures in anaerobic soil microcosm incubations. Organic Geochemistry, 2018, 117, 12-21.	0.9	22
38	Novel Sulfolobus Virus with an Exceptional Capsid Architecture. Journal of Virology, 2018, 92, .	1.5	15
39	Environmental factors shaping the archaeal community structure and ether lipid distribution in a subtropic river and estuary, China. Applied Microbiology and Biotechnology, 2018, 102, 461-474.	1.7	7
40	Bio-Organic Geochemistry research in China: Advances, opportunities and challenges. Science China Earth Sciences, 2018, 61, 1775-1780.	2.3	2
41	Insight Into the Pico- and Nano-Phytoplankton Communities in the Deepest Biosphere, the Mariana Trench. Frontiers in Microbiology, 2018, 9, 2289.	1.5	30
42	Energy Gradients Structure Microbial Communities Across Sediment Horizons in Deep Marine Sediments of the South China Sea. Frontiers in Microbiology, 2018, 9, 729.	1.5	19
43	Evolving paradigms in biological carbon cycling in the ocean. National Science Review, 2018, 5, 481-499.	4.6	100
44	Potential degradation effect on paleo-moisture proxies based onÂtheÂrelative abundance of archaeal vs. bacterial tetraethers inÂloess-paleosolÂsequences on the Chinese Loess Plateau. Quaternary International, 2017, 436, 173-180.	0.7	7
45	Effects of elevated CO2 and nitrogen supply on the growth and photosynthetic physiology of a marine cyanobacterium, Synechococcus sp. PCC7002. Journal of Applied Phycology, 2017, 29, 1755-1763.	1.5	17
46	The response of archaeal species to seasonal variables in a subtropical aerated soil: insight into the low abundant methanogens. Applied Microbiology and Biotechnology, 2017, 101, 6505-6515.	1.7	7
47	Untangling the role that microbes play in ocean carbon cycle─A new paradigm in marine biogeochemistry. Science China Earth Sciences, 2017, 60, 409-412.	2.3	6
48	Sources and compositional distribution of organic carbon in surface sediments from the lower Pearl River to the coastal South China Sea. Journal of Geophysical Research G: Biogeosciences, 2017, 122, 2104-2117.	1.3	28
49	Sea-level changes and carbonate platform evolution of the Xisha Islands (South China Sea) since the Early Miocene. Palaeogeography, Palaeoclimatology, Palaeoecology, 2017, 485, 504-516.	1.0	57
50	Succession of bacterial community structure and potential significance along a sediment core from site U1433 of IODP expedition 349, South China Sea. Marine Geology, 2017, 394, 125-132.	0.9	17
51	Phylogenetic Diversity of T4-Type Phages in Sediments from the Subtropical Pearl River Estuary. Frontiers in Microbiology, 2017, 8, 897.	1.5	19
52	Marine Group II Dominates Planktonic Archaea in Water Column of the Northeastern South China Sea. Frontiers in Microbiology, 2017, 8, 1098.	1.5	32
53	Thermoplasmatales and Methanogens: Potential Association with the Crenarchaeol Production in Chinese Soils. Frontiers in Microbiology, 2017, 8, 1200.	1.5	2
54	Evaluating Production of Cyclopentyl Tetraethers by Marine Group II Euryarchaeota in the Pearl River Estuary and Coastal South China Sea: Potential Impact on the TEX86 Paleothermometer. Frontiers in Microbiology, 2017, 8, 2077.	1.5	13

#	Article	IF	CITATIONS
55	Influence of Growth Phase, pH, and Temperature on the Abundance and Composition of Tetraether Lipids in the Thermoacidophile Picrophilus torridus. Frontiers in Microbiology, 2016, 7, 1323.	1.5	33
56	Tracking the signals of living archaea: A multiple reaction monitoring (MRM) method for detection of trace amounts of intact polar lipids from the natural environment. Organic Geochemistry, 2016, 97, 1-4.	0.9	10
57	Metagenomic evidence for the presence of phototrophic <scp>G</scp> emmatimonadetes bacteria in diverse environments. Environmental Microbiology Reports, 2016, 8, 139-149.	1.0	66
58	The spatial distribution of archaeal lipids in a mesoscale subtropical watershed, Southeast China. Science China Earth Sciences, 2016, 59, 1317-1328.	2.3	8
59	From ether to acid: A plausible degradation pathway of glycerol dialkyl glycerol tetraethers. Geochimica Et Cosmochimica Acta, 2016, 183, 138-152.	1.6	30
60	Distribution of branched glycerol dialkyl glycerol tetraethers in soils on the Northeastern Qinghai-Tibetan Plateau and possible production by nitrite-reducing bacteria. Science China Earth Sciences, 2016, 59, 1834-1846.	2.3	10
61	Evolution of the East China Sea sedimentary environment in the past 14 kyr: Insights from tetraethers-based proxies. Science China Earth Sciences, 2016, 59, 927-938.	2.3	8
62	Branched tetraether lipids in Chinese soils: Evaluating the fidelity of MBT/CBT proxies as paleoenvironmental proxies. Science China Earth Sciences, 2016, 59, 1353-1367.	2.3	13
63	Advances in GDGT research in Chinese marginal seas: A review. Science China Earth Sciences, 2016, 59, 1173-1186.	2.3	7
64	A 12-kyr record of microbial branched and isoprenoid tetraether index in Lake Qinghai, northeastern Qinghai-Tibet Plateau: Implications for paleoclimate reconstruction. Science China Earth Sciences, 2016, 59, 951-960.	2.3	13
65	Bacillus urumqiensis sp. nov., a moderately haloalkaliphilic bacterium isolated from a salt lake. International Journal of Systematic and Evolutionary Microbiology, 2016, 66, 2305-2312.	0.8	20
66	Marine Group II Archaea, potentially important players in the global ocean carbon cycle. Frontiers in Microbiology, 2015, 6, 1108.	1.5	119
67	Seismic stratigraphy of the central South China Sea basin and implications for neotectonics. Journal of Geophysical Research: Solid Earth, 2015, 120, 1377-1399.	1.4	155
68	Hydroclimate Implications of Thermocline Variability in the Southern South China Sea Over the Past 180,000 yr. Quaternary Research, 2015, 83, 370-377.	1.0	18
69	Temporal variation in community structure and lipid composition of Thaumarchaeota from subtropical soil: Insight into proposing a new soil pH proxy. Organic Geochemistry, 2015, 83-84, 54-64.	0.9	22
70	Distribution of ether lipids and composition of the archaeal community in terrestrial geothermal springs: impact of environmental variables. Environmental Microbiology, 2015, 17, 1600-1614.	1.8	29
71	Glacial–interglacial contrast in MBT/CBT proxies in the South China Sea: Implications for marine production of branched GDGTs and continental teleconnection. Organic Geochemistry, 2015, 79, 74-82.	0.9	27
72	Unusually low TEX86 values in the transitional zone between Pearl River estuary and coastal South China Sea: Impact of changing archaeal community composition. Chemical Geology, 2015, 402, 18-29.	1.4	42

#	Article	IF	CITATIONS
73	Sea surface temperature variation during the last deglaciation in the southern Okinawa Trough: Modulation of high latitude teleconnections and the Kuroshio Current. Progress in Oceanography, 2015, 138, 238-248.	1.5	20
74	Deglacial and Holocene Archaeal Lipid-Inferred Paleohydrology and Paleotemperature History of Lake Qinghai, Northeastern Qinghai–Tibetan Plateau. Quaternary Research, 2015, 83, 116-126.	1.0	43
75	Dependence of the cyclization of branched tetraethers on soil moisture in alkaline soils from arid–subhumid China: implications for palaeorainfall reconstructions on the Chinese Loess Plateau. Biogeosciences, 2014, 11, 6755-6768.	1.3	48
76	Ages and magnetic structures of the South China Sea constrained by deep tow magnetic surveys and IODP Expedition 349. Geochemistry, Geophysics, Geosystems, 2014, 15, 4958-4983.	1.0	419
77	Production of branched tetraether lipids in Tibetan hot springs: A possible linkage to nitrite reduction by thermotolerant or thermophilic bacteria?. Chemical Geology, 2014, 386, 209-217.	1.4	12
78	Tracking the migration of our Chinese ancestors using molecular science. National Science Review, 2014, 1, 166-167.	4.6	0
79	Archaeal Diversity and Spatial Distribution in the Surface Sediment of the South China Sea. Geomicrobiology Journal, 2014, 31, 1-11.	1.0	11
80	Lipid and DNA Evidence of Dominance of Planktonic Archaea Preserved in Sediments of the South China Sea: Insight for Application of the TEX86 Proxy in an Unstable Marine Sediment Environment. Geomicrobiology Journal, 2014, 31, 360-369.	1.0	2
81	Differential temperature and pH controls on the abundance and composition of H-GDGTs in terrestrial hot springs. Organic Geochemistry, 2014, 75, 109-121.	0.9	15
82	Seasonal patterns in microbial communities inhabiting the hot springs of <scp>T</scp> engchong, <scp>Y</scp> unnan Province, <scp>C</scp> hina. Environmental Microbiology, 2014, 16, 1579-1591.	1.8	57
83	Salinity-dominated change in community structure and ecological function of Archaea from the lower Pearl River to coastal South China Sea. Applied Microbiology and Biotechnology, 2014, 98, 7971-7982.	1.7	98
84	Water depth affecting thaumarchaeol production in Lake Qinghai, northeastern Qinghai–Tibetan plateau: Implications for paleo lake levels and paleoclimate. Chemical Geology, 2014, 368, 76-84.	1.4	53
85	Single-cell genomics shedding light on marine Thaumarchaeota diversification. ISME Journal, 2014, 8, 732-736.	4.4	98
86	Tetraether lipids from the southern Yellow Sea of China: Implications for the variability of East Asia Winter Monsoon in the Holocene. Organic Geochemistry, 2014, 70, 10-19.	0.9	31
87	Distribution of tetraether lipids in surface sediments of the northern South China Sea: Implications for TEX86 proxies. Geoscience Frontiers, 2013, 4, 223-229.	4.3	35
88	Branched and isoprenoid tetraether (BIT) index traces water content along two marsh-soil transects surrounding Lake Qinghai: Implications for paleo-humidity variation. Organic Geochemistry, 2013, 59, 75-81.	0.9	41
89	Distribution of glycerol dialkyl glycerol tetraether lipids along an altitudinal transect on Mt. Xiangpi, NE Qinghai-Tibetan Plateau, China. Organic Geochemistry, 2013, 57, 76-83.	0.9	68
90	Evaluation of glycerol dialkyl glycerol tetraether proxies for reconstruction of the paleo-environment on the Qinghai-Tibetan Plateau. Organic Geochemistry, 2013, 61, 45-56.	0.9	30

#	Article	IF	CITATIONS
91	Microbial glycerol dialkyl glycerol tetraethers from river water and soil near the Three Gorges Dam on the Yangtze River. Organic Geochemistry, 2013, 56, 40-50.	0.9	44
92	Carbon isotopic composition of isoprenoid tetraether in surface sediments of Lake Qinghai and surrounding soils. Organic Geochemistry, 2013, 60, 54-61.	0.9	6
93	Bacterial and archaeal diversities in <scp>Y</scp> unnan and <scp>T</scp> ibetan hot springs, <scp>C</scp> hina. Environmental Microbiology, 2013, 15, 1160-1175.	1.8	121
94	Assessing the ratio of archaeol to caldarchaeol as a salinity proxy in highland lakes on the northeastern Qinghai–Tibetan Plateau. Organic Geochemistry, 2013, 54, 69-77.	0.9	34
95	Thaumarchaeotal Signature Gene Distribution in Sediments of the Northern South China Sea: an Indicator of the Metabolic Intersection of the Marine Carbon, Nitrogen, and Phosphorus Cycles?. Applied and Environmental Microbiology, 2013, 79, 2137-2147.	1.4	58
96	Environmental controls on the distribution of archaeal lipids in <scp>T</scp> ibetan hot springs: insight into the application of organic proxies for biogeochemical processes. Environmental Microbiology Reports, 2013, 5, 868-882.	1.0	13
97	Addressing Questions on Life in Terrestrial Geothermal Systems. Eos, 2013, 94, 325-325.	0.1	1
98	An interlaboratory study of TEX ₈₆ and BIT analysis of sediments, extracts, and standard mixtures. Geochemistry, Geophysics, Geosystems, 2013, 14, 5263-5285.	1.0	76
99	A Comprehensive Census of Microbial Diversity in Hot Springs of Tengchong, Yunnan Province China Using 16S rRNA Gene Pyrosequencing. PLoS ONE, 2013, 8, e53350.	1.1	216
100	The Role of Tetraether Lipid Composition in the Adaptation of Thermophilic Archaea to Acidity. Frontiers in Microbiology, 2013, 4, 62.	1.5	69
101	In situ production of branched glycerol dialkyl glycerol tetraethers in a great basin hot spring (USA). Frontiers in Microbiology, 2013, 4, 181.	1.5	22
102	Wide distribution of autochthonous branched glycerol dialkyl glycerol tetraethers (bGDGTs) in U.S. Great Basin hot springs. Frontiers in Microbiology, 2013, 4, 222.	1.5	11
103	The distribution and abundance of archaeal tetraether lipids in U.S. Great Basin hot springs. Frontiers in Microbiology, 2013, 4, 247.	1.5	7
104	Impacts of temperature and pH on the distribution of archaeal lipids in Yunnan hot springs, China. Frontiers in Microbiology, 2013, 4, 312.	1.5	12
105	amoA-encoding archaea and thaumarchaeol in the lakes on the northeastern Qinghai-Tibetan Plateau, China. Frontiers in Microbiology, 2013, 4, 329.	1.5	34
106	Control of Temperature on Microbial Community Structure in Hot Springs of the Tibetan Plateau. PLoS ONE, 2013, 8, e62901.	1.1	157
107	Actinobacterial Diversity in Microbial Mats of Five Hot Springs in Central and Central-Eastern Tibet, China. Geomicrobiology Journal, 2012, 29, 520-527.	1.0	17
108	The Response of Potentially Active Planktonic Actinobacteria to the Construction of Three Gorges Dam of the Yangtze River, China. Geomicrobiology Journal, 2012, 29, 114-123.	1.0	4

#	Article	IF	CITATIONS
109	Distribution of glycerol dialkyl glycerol tetraethers in surface sediments of Lake Qinghai and surrounding soil. Organic Geochemistry, 2012, 47, 78-87.	0.9	84
110	Archaeal tetraether lipids record subsurface water temperature in the South China Sea. Organic Geochemistry, 2012, 50, 68-77.	0.9	78
111	Diversity of microbial plankton across the Three Gorges Dam of the Yangtze River, China. Geoscience Frontiers, 2012, 3, 335-349.	4.3	35
112	Distribution of glycerol dialkyl glycerol tetraethers in Tibetan hot springs. Geoscience Frontiers, 2012, 3, 289-300.	4.3	22
113	Methane Index: A tetraether archaeal lipid biomarker indicator for detecting the instability of marine gas hydrates. Earth and Planetary Science Letters, 2011, 307, 525-534.	1.8	233
114	n-Alkan-2-one distributions in a northeastern China peat core spanning the last 16 kyr. Organic Geochemistry, 2011, 42, 25-30.	0.9	27
115	Occurrence of tetraether lipids in stalagmites: Implications for sources and GDGT-based proxies. Organic Geochemistry, 2011, 42, 108-115.	0.9	50
116	Ammonia-oxidizing Archaea in Kamchatka Hot Springs. Geomicrobiology Journal, 2011, 28, 149-159.	1.0	21
117	Temperature and pH controls on glycerol dibiphytanyl glycerol tetraether lipid composition in the hyperthermophilic crenarchaeon Acidilobus sulfurireducens. Extremophiles, 2011, 15, 59-65.	0.9	83
118	Archaeal and bacterial diversity in hot springs on the Tibetan Plateau, China. Extremophiles, 2011, 15, 549-563.	0.9	80
119	Spatial Variations in Archaeal Lipids of Surface Water and Core-Top Sediments in the South China Sea and Their Implications for Paleoclimate Studies. Applied and Environmental Microbiology, 2011, 77, 7479-7489.	1.4	67
120	Community Structure of Archaea from Deep-Sea Sediments of the South China Sea. Microbial Ecology, 2010, 60, 796-806.	1.4	25
121	Diversity of Crenarchaeota in terrestrial hot springs in Tengchong, China. Extremophiles, 2010, 14, 287-296.	0.9	49
122	RNA-Based Investigation of Ammonia-Oxidizing Archaea in Hot Springs of Yunnan Province, China. Applied and Environmental Microbiology, 2010, 76, 4538-4541.	1.4	81
123	Distribution and Diversity of Bacteria and Archaea in Marine Sediments Affected by Gas Hydrates at Mississippi Canyon in the Gulf of Mexico. Geomicrobiology Journal, 2009, 26, 370-381.	1.0	12
124	Vertical distribution and diversity of sulfate-reducing prokaryotes in the Pearl River estuarine sediments, Southern China. FEMS Microbiology Ecology, 2009, 70, 249-262.	1.3	72
125	Community Structure of Archaea in the Water Column above Gas Hydrates in the Gulf of Mexico. Geomicrobiology Journal, 2009, 26, 363-369.	1.0	10
126	<i>Actinobacterial</i> Diversity in Hot Springs in Tengchong (China), Kamchatka (Russia), and Nevada (USA). Geomicrobiology Journal, 2009, 26, 256-263.	1.0	36

#	Article	IF	CITATIONS
127	Archaeal Lipids and 16S rRNA Genes Characterizing Non-hydrate and Hydrate-Impacted Sediments in the Gulf of Mexico. Geomicrobiology Journal, 2009, 26, 227-237.	1.0	10
128	GeoChip-based analysis of metabolic diversity of microbial communities at the Juan de Fuca Ridge hydrothermal vent. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 4840-4845.	3.3	139
129	Dominance of putative marine benthic <i>Archaea</i> in Qinghai Lake, northâ€western China. Environmental Microbiology, 2008, 10, 2355-2367.	1.8	62
130	Distribution of aliphatic des-A-triterpenoids in the Dajiuhu peat deposit, southern China. Organic Geochemistry, 2008, 39, 1765-1771.	0.9	41
131	Global Occurrence of Archaeal <i>amoA</i> Genes in Terrestrial Hot Springs. Applied and Environmental Microbiology, 2008, 74, 6417-6426.	1.4	189
132	Factors Controlling the Distribution of Archaeal Tetraethers in Terrestrial Hot Springs. Applied and Environmental Microbiology, 2008, 74, 3523-3532.	1.4	125
133	Lipid Biomarkers, Carbon Isotopes, and Phylogenetic Characterization of Bacteria in California and Nevada Hot Springs. Geomicrobiology Journal, 2007, 24, 519-534.	1.0	30
134	Isolation, Characterization, and Ecology of Sulfur-Respiring <i>Crenarchaea</i> Inhabiting Acid-Sulfate-Chloride-Containing Geothermal Springs in Yellowstone National Park. Applied and Environmental Microbiology, 2007, 73, 6669-6677.	1.4	102
135	Spatial patterns of bacterial signature biomarkers in marine sediments of the Gulf of Mexico. Chemical Geology, 2007, 238, 168-179.	1.4	36
136	Molecular Phylogeny of Uncultivated <i>Crenarchaeota</i> in Great Basin Hot Springs of Moderately Elevated Temperature. Geomicrobiology Journal, 2007, 24, 535-542.	1.0	23
137	Microbial response to salinity change in Lake Chaka, a hypersaline lake on Tibetan plateau. Environmental Microbiology, 2007, 9, 2603-2621.	1.8	210
138	Evidence for Autotrophy via the Reverse Tricarboxylic Acid Cycle in the Marine Magnetotactic Coccus Strain MC-1. Applied and Environmental Microbiology, 2006, 72, 1322-1329.	1.4	120
139	Reduction of Iron Oxides Enhanced by a Sulfate-Reducing Bacterium and Biogenic H2S. Geomicrobiology Journal, 2006, 23, 103-117.	1.0	88
140	Hydrogen isotope ratios of aliphatic and diterpenoid hydrocarbons in coals and carbonaceous mudstones from the Liaohe Basin, China. Organic Geochemistry, 2006, 37, 165-176.	0.9	24
141	Diversity of functional genes for methanotrophs in sediments associated with gas hydrates and hydrocarbon seeps in the Gulf of Mexico. FEMS Microbiology Ecology, 2006, 57, 251-259.	1.3	48
142	A comparative study of experimental maturation of peat, brown coal and subbituminous coal: Implications for coalification. International Journal of Coal Geology, 2006, 66, 108-118.	1.9	21
143	Thermalkalibacillus uzonensis gen. nov. sp. nov, a novel aerobic alkali-tolerant thermophilic bacterium isolated from a hot spring in Uzon Caldera, Kamchatka. Extremophiles, 2006, 10, 337-345.	0.9	12
144	Thermophilic Temperature Optimum for Crenarchaeol Synthesis and Its Implication for Archaeal Evolution. Applied and Environmental Microbiology, 2006, 72, 4419-4422.	1.4	89

#	Article	IF	CITATIONS
145	Lipid Biomarkers and Carbon Isotope Signatures of a Microbial (Beggiatoa) Mat Associated with Gas Hydrates in the Gulf of Mexico. Applied and Environmental Microbiology, 2005, 71, 2106-2112.	1.4	97
146	Microbial Diversity in Ultra-High-Pressure Rocks and Fluids from the Chinese Continental Scientific Drilling Project in China. Applied and Environmental Microbiology, 2005, 71, 3213-3227.	1.4	77
147	Lipid biomarkers preserved in hydrate-associated authigenic carbonate rocks of the Gulf of Mexico. Palaeogeography, Palaeoclimatology, Palaeoecology, 2005, 227, 48-66.	1.0	41
148	Formation of tabular single-domain magnetite induced by Geobacter metallireducens GS-15. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 16121-16126.	3.3	97
149	Alkaline Anaerobic Respiration: Isolation and Characterization of a Novel Alkaliphilic and Metal-Reducing Bacterium. Applied and Environmental Microbiology, 2004, 70, 5595-5602.	1.4	125
150	Nonmarine Crenarchaeol in Nevada Hot Springs. Applied and Environmental Microbiology, 2004, 70, 5229-5237.	1.4	168
151	Quantifying carbon sources in the formation of authigenic carbonates at gas hydrate sites in the Gulf of Mexico. Chemical Geology, 2004, 205, 253-264.	1.4	123
152	Iron reduction and alteration of nontronite NAu-2 by a sulfate-reducing bacterium. Geochimica Et Cosmochimica Acta, 2004, 68, 3251-3260.	1.6	93
153	Lipid biomarkers and carbon-isotopes of modern travertine deposits (Yellowstone National Park, USA): Implications for biogeochemical dynamics in hot-spring systems. Geochimica Et Cosmochimica Acta, 2004, 68, 3157-3169.	1.6	63
154	Carbon and hydrogen isotope fractionations associated with dissimilatory iron-reducing bacteria. Chemical Geology, 2003, 195, 5-16.	1.4	29
155	Carbon isotope signatures of fatty acids in Geobacter metallireducens and Shewanella algae. Chemical Geology, 2003, 195, 17-28.	1.4	65
156	Archaeal lipid biomarkers and isotopic evidence of anaerobic methane oxidation associated with gas hydrates in the Gulf of Mexico. Organic Geochemistry, 2003, 34, 827-836.	0.9	83
157	BIOGEOCHEMICAL AND ENVIRONMENTAL FACTORS IN Fe BIOMINERALIZATION: MAGNETITE AND SIDERITE FORMATION. Clays and Clay Minerals, 2003, 51, 83-95.	0.6	116
158	Biotransformations and biodegradation in extreme environments. Progress in Industrial Microbiology, 2002, , 549-571.	0.0	0
159	Introduction of a plasmid-encoded phoA gene for constitutive overproduction of alkaline phosphatase in three subsurface Pseudomonas isolates. FEMS Microbiology Ecology, 2002, 41, 115-123.	1.3	33
160	Iron reduction by psychrotrophic enrichment cultures. FEMS Microbiology Ecology, 1999, 30, 367-371.	1.3	21
161	Grain size and depth constraints on microbial variability in coastal plain subsurface sediments. Geomicrobiology Journal, 1998, 15, 171-185.	1.0	35
162	Thermophilic Fe(III)-Reducing Bacteria from the Deep Subsurface: The Evolutionary Implications. Science, 1997, 277, 1106-1109.	6.0	147

#	Article	IF	CITATIONS
163	Physiochemical, mineralogical, and isotopic characterization of magnetite-rich iron oxides formed by thermophilic iron-reducing bacteria. Geochimica Et Cosmochimica Acta, 1997, 61, 4621-4632.	1.6	83
164	Enhancement of Fe(III), Co(III), and Cr(VI) reduction at elevated temperatures and by a thermophilic bacterium. Applied Biochemistry and Biotechnology, 1996, 57-58, 923-932.	1.4	49
165	Stable-isotope stratigraphy of brachiopods from Pennsylvanian shales in Texas. Bulletin of the Geological Society of America, 1991, 103, 953-965.	1.6	89
166	Linking Bacterial Communities to Optical-Derived Properties of Porewater DOM in Sediments in the Coastal East China Sea. Frontiers in Marine Science, 0, 9, .	1.2	0