
Enrico Calloni

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9488597/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Observation of Gravitational Waves from a Binary Black Hole Merger. Physical Review Letters, 2016, 116, 061102.	2.9	8,753
2	GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral. Physical Review Letters, 2017, 119, 161101.	2.9	6,413
3	Advanced Virgo: a second-generation interferometric gravitational wave detector. Classical and Quantum Gravity, 2015, 32, 024001.	1.5	2,530
4	GWTC-1: A Gravitational-Wave Transient Catalog of Compact Binary Mergers Observed by LIGO and Virgo during the First and Second Observing Runs. Physical Review X, 2019, 9, .	2.8	2,022
5	GW170814: A Three-Detector Observation of Gravitational Waves from a Binary Black Hole Coalescence. Physical Review Letters, 2017, 119, 141101.	2.9	1,600
6	The Einstein Telescope: a third-generation gravitational wave observatory. Classical and Quantum Gravity, 2010, 27, 194002.	1.5	1,211
7	GWTC-2: Compact Binary Coalescences Observed by LIGO and Virgo during the First Half of the Third Observing Run. Physical Review X, 2021, 11, .	2.8	1,097
8	GW190814: Gravitational Waves from the Coalescence of a 23 Solar Mass Black Hole with a 2.6 Solar Mass Compact Object. Astrophysical Journal Letters, 2020, 896, L44.	3.0	1,090
9	Characterization of the LIGO detectors during their sixth science run. Classical and Quantum Gravity, 2015, 32, 115012.	1.5	1,029
10	Predictions for the rates of compact binary coalescences observable by ground-based gravitational-wave detectors. Classical and Quantum Gravity, 2010, 27, 173001.	1.5	956
11	GW190521: A Binary Black Hole Merger with a Total Mass of <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:mn>150</mml:mn><mml:mtext> </mml:mtext><aefwill:mtext> stretchy="false">aŠ™</aefwill:mtext></mml:mrow>. Physical Review</mml:math 	nl ant ext><	nasada msub
12	Prospects for observing and localizing gravitational-wave transients with Advanced LIGO, Advanced Virgo and KAGRA. Living Reviews in Relativity, 2018, 21, 3.	8.2	808
13	Sensitivity studies for third-generation gravitational wave observatories. Classical and Quantum Gravity, 2011, 28, 094013.	1.5	644
14	Prospects for observing and localizing gravitational-wave transients with Advanced LIGO, Advanced Virgo and KAGRA. Living Reviews in Relativity, 2020, 23, 3.	8.2	447
15	Prospects for Observing and Localizing Gravitational-Wave Transients with Advanced LIGO and Advanced Virgo. Living Reviews in Relativity, 2016, 19, 1.	8.2	427
16	Properties and Astrophysical Implications of the 150 M _⊙ Binary Black Hole Merger GW190521. Astrophysical Journal Letters, 2020, 900, L13.	3.0	406
17	GW190412: Observation of a binary-black-hole coalescence with asymmetric masses. Physical Review D, 2020, 102, .	1.6	394
18	Scientific objectives of Einstein Telescope. Classical and Quantum Gravity, 2012, 29, 124013.	1.5	355

#	Article	IF	CITATIONS
19	An upper limit on the stochastic gravitational-wave background of cosmological origin. Nature, 2009, 460, 990-994.	13.7	303
20	The third generation of gravitational wave observatories and their science reach. Classical and Quantum Gravity, 2010, 27, 084007.	1.5	287
21	GW150914: Implications for the Stochastic Gravitational-Wave Background from Binary Black Holes. Physical Review Letters, 2016, 116, 131102.	2.9	269
22	Virgo: a laser interferometer to detect gravitational waves. Journal of Instrumentation, 2012, 7, P03012-P03012.	0.5	257
23	Increasing the Astrophysical Reach of the Advanced Virgo Detector via the Application of Squeezed Vacuum States of Light. Physical Review Letters, 2019, 123, 231108.	2.9	254
24	Characterization of transient noise in Advanced LIGO relevant to gravitational wave signal GW150914. Classical and Quantum Gravity, 2016, 33, 134001.	1.5	225
25	Search for the isotropic stochastic background using data from Advanced LIGO's second observing run. Physical Review D, 2019, 100, .	1.6	200
26	Upper Limits on the Stochastic Gravitational-Wave Background from Advanced LIGO's First Observing Run. Physical Review Letters, 2017, 118, 121101.	2.9	194
27	Search for gravitational waves from low mass compact binary coalescence in LIGO's sixth science run and Virgo's science runs 2 and 3. Physical Review D, 2012, 85, .	1.6	185
28	The Virgo status. Classical and Quantum Gravity, 2006, 23, S635-S642.	1.5	179
29	Status of the Virgo project. Classical and Quantum Gravity, 2011, 28, 114002.	1.5	171
30	SEARCHES FOR GRAVITATIONAL WAVES FROM KNOWN PULSARS WITH SCIENCE RUN 5 LIGO DATA. Astrophysical Journal, 2010, 713, 671-685.	1.6	155
31	Status of Virgo. Classical and Quantum Gravity, 2008, 25, 114045.	1.5	148
32	UPPER LIMITS ON THE RATES OF BINARY NEUTRON STAR AND NEUTRON STAR–BLACK HOLE MERGERS FROM ADVANCED LIGO'S FIRST OBSERVING RUN. Astrophysical Journal Letters, 2016, 832, L21.	3.0	146
33	Parameter estimation for compact binary coalescence signals with the first generation gravitational-wave detector network. Physical Review D, 2013, 88, .	1.6	132
34	GRAVITATIONAL WAVES FROM KNOWN PULSARS: RESULTS FROM THE INITIAL DETECTOR ERA. Astrophysical Journal, 2014, 785, 119.	1.6	125
35	Virgo status. Classical and Quantum Gravity, 2008, 25, 184001.	1.5	116
36	Search for gravitational waves from compact binary coalescence in LIGO and Virgo data from S5 and VSR1. Physical Review D, 2010, 82, .	1.6	111

3

#	Article	IF	CITATIONS
37	All-sky search for gravitational-wave bursts in the first joint LIGO-GEO-Virgo run. Physical Review D, 2010, 81, .	1.6	107
38	All-sky search for gravitational-wave bursts in the second joint LIGO-Virgo run. Physical Review D, 2012, 85, .	1.6	107
39	SEARCH FOR GRAVITATIONAL WAVES ASSOCIATED WITH GAMMA-RAY BURSTS DURING LIGO SCIENCE RUN 6 AND VIRGO SCIENCE RUNS 2 AND 3. Astrophysical Journal, 2012, 760, 12.	1.6	104
40	Search for Gravitational Waves from a Long-lived Remnant of the Binary Neutron Star Merger GW170817. Astrophysical Journal, 2019, 875, 160.	1.6	97
41	Directional Limits on Persistent Gravitational Waves Using LIGO S5 Science Data. Physical Review Letters, 2011, 107, 271102.	2.9	94
42	Search for gravitational waves from binary black hole inspiral, merger, and ringdown in LIGO-Virgo data from 2009–2010. Physical Review D, 2013, 87, .	1.6	92
43	Einstein@Home all-sky search for periodic gravitational waves in LIGO S5 data. Physical Review D, 2013, 87, .	1.6	91
44	SEARCH FOR GRAVITATIONAL-WAVE INSPIRAL SIGNALS ASSOCIATED WITH SHORT GAMMA-RAY BURSTS DURING LIGO'S FIFTH AND VIRGO'S FIRST SCIENCE RUN. Astrophysical Journal, 2010, 715, 1453-1461.	1.6	90
45	Status of VIRGO. Classical and Quantum Gravity, 2004, 21, S385-S394.	1.5	89
46	BEATING THE SPIN-DOWN LIMIT ON GRAVITATIONAL WAVE EMISSION FROM THE VELA PULSAR. Astrophysical Journal, 2011, 737, 93.	1.6	89
47	Constraints on cosmic strings using data from the first Advanced LIGO observing run. Physical Review D, 2018, 97, .	1.6	88
48	Constraints on Cosmic Strings Using Data from the Third Advanced LIGO–Virgo Observing Run. Physical Review Letters, 2021, 126, 241102.	2.9	87
49	Improved Upper Limits on the Stochastic Gravitational-Wave Background from 2009–2010 LIGO and Virgo Data. Physical Review Letters, 2014, 113, 231101.	2.9	86
50	The present status of the VIRGO Central Interferometer*. Classical and Quantum Gravity, 2002, 19, 1421-1428.	1.5	85
51	Search for gravitational waves from binary black hole inspiral, merger, and ringdown. Physical Review D, 2011, 83, .	1.6	85
52	Calibration and sensitivity of the Virgo detector during its second science run. Classical and Quantum Gravity, 2011, 28, 025005.	1.5	85
53	Search for Tensor, Vector, and Scalar Polarizations in the Stochastic Gravitational-Wave Background. Physical Review Letters, 2018, 120, 201102.	2.9	85
54	Directional Limits on Persistent Gravitational Waves from Advanced LIGO's First Observing Run. Physical Review Letters, 2017, 118, 121102.	2.9	84

#	Article	IF	CITATIONS
55	Implementation and testing of the first prompt search forÂgravitational wave transients with electromagnetic counterparts. Astronomy and Astrophysics, 2012, 539, A124.	2.1	84
56	The status of VIRGO. Classical and Quantum Gravity, 2006, 23, S63-S69.	1.5	83
57	Measurement of the seismic attenuation performance of the VIRGO Superattenuator. Astroparticle Physics, 2005, 23, 557-565.	1.9	79
58	Towards Measuring Variations of Casimir Energy by a Superconducting Cavity. Physical Review Letters, 2005, 94, 180402.	2.9	77
59	First low-latency LIGO+Virgo search for binary inspirals and their electromagnetic counterparts. Astronomy and Astrophysics, 2012, 541, A155.	2.1	75
60	The characterization of Virgo data and its impact on gravitational-wave searches. Classical and Quantum Gravity, 2012, 29, 155002.	1.5	73
61	Constraints on Cosmic Strings from the LIGO-Virgo Gravitational-Wave Detectors. Physical Review Letters, 2014, 112, 131101.	2.9	68
62	Variations of Casimir energy from a superconducting transition. Nuclear Physics B, 2005, 726, 441-463.	0.9	67
63	All-sky search for periodic gravitational waves in the full S5 LIGO data. Physical Review D, 2012, 85, .	1.6	66
64	SEARCHES FOR CONTINUOUS GRAVITATIONAL WAVES FROM NINE YOUNG SUPERNOVA REMNANTS. Astrophysical Journal, 2015, 813, 39.	1.6	66
65	Directed search for continuous gravitational waves from the Galactic center. Physical Review D, 2013, 88, .	1.6	65
66	Gravitational-wave Constraints on the Equatorial Ellipticity of Millisecond Pulsars. Astrophysical Journal Letters, 2020, 902, L21.	3.0	65
67	Measurements of Superattenuator seismic isolation by Virgo interferometer. Astroparticle Physics, 2010, 33, 182-189.	1.9	62
68	SWIFT FOLLOW-UP OBSERVATIONS OF CANDIDATE GRAVITATIONAL-WAVE TRANSIENT EVENTS. Astrophysical Journal, Supplement Series, 2012, 203, 28.	3.0	62
69	Search for anisotropic gravitational-wave backgrounds using data from Advanced LIGO and Advanced Virgo's first three observing runs. Physical Review D, 2021, 104, .	1.6	62
70	Searches for Continuous Gravitational Waves from 15 Supernova Remnants and Fomalhaut b with Advanced LIGO [*] . Astrophysical Journal, 2019, 875, 122.	1.6	61
71	SEARCH FOR GRAVITATIONAL-WAVE BURSTS ASSOCIATED WITH GAMMA-RAY BURSTS USING DATA FROM LIGO SCIENCE RUN 5 AND VIRGO SCIENCE RUN 1. Astrophysical Journal, 2010, 715, 1438-1452.	1.6	60
72	First all-sky search for continuous gravitational waves from unknown sources in binary systems. Physical Review D, 2014, 90, .	1.6	60

#	Article	IF	CITATIONS
73	First targeted search for gravitational-wave bursts from core-collapse supernovae in data of first-generation laser interferometer detectors. Physical Review D, 2016, 94, .	1.6	60
74	Noise from scattered light in Virgo's second science run data. Classical and Quantum Gravity, 2010, 27, 194011.	1.5	59
75	Search for gravitational waves from Scorpius X-1 in the first Advanced LIGO observing run with a hidden Markov model. Physical Review D, 2017, 95, .	1.6	59
76	Search for Lensing Signatures in the Gravitational-Wave Observations from the First Half of LIGO–Virgo's Third Observing Run. Astrophysical Journal, 2021, 923, 14.	1.6	59
77	FIRST SEARCHES FOR OPTICAL COUNTERPARTS TO GRAVITATIONAL-WAVE CANDIDATE EVENTS. Astrophysical Journal, Supplement Series, 2014, 211, 7.	3.0	57
78	Status of Virgo detector. Classical and Quantum Gravity, 2007, 24, S381-S388.	1.5	56
79	SEARCH FOR GRAVITATIONAL WAVE BURSTS FROM SIX MAGNETARS. Astrophysical Journal Letters, 2011, 734, L35.	3.0	55
80	Status of Virgo. Classical and Quantum Gravity, 2005, 22, S869-S880.	1.5	54
81	All-sky search for short gravitational-wave bursts in the second Advanced LIGO and Advanced Virgo run. Physical Review D, 2019, 100, .	1.6	54
82	Energy-momentum tensor for a Casimir apparatus in a weak gravitational field. Physical Review D, 2006, 74, .	1.6	52
83	Relativistic mechanics of Casimir apparatuses in a weak gravitational field. Physical Review D, 2007, 76,	1.6	52
84	Search for Gravitational Waves Associated with Gamma-Ray Bursts during the First Advanced LIGO Observing Run and Implications for the Origin of GRB 150906B. Astrophysical Journal, 2017, 841, 89.	1.6	52
85	Directional limits on persistent gravitational waves using data from Advanced LIGO's first two observing runs. Physical Review D, 2019, 100, .	1.6	52
86	Search for gravitational waves from intermediate mass binary black holes. Physical Review D, 2012, 85,	1.6	48
87	High altitude test of RPCs for the Argo YBJ experiment. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2000, 443, 342-350.	0.7	47
88	Directed search for gravitational waves from Scorpius X-1 with initial LIGO data. Physical Review D, 2015, 91, .	1.6	47
89	Upper Limits on Gravitational Waves from Scorpius X-1 from a Model-based Cross-correlation Search in Advanced LIGO Data. Astrophysical Journal, 2017, 847, 47.	1.6	46
90	Search for gravitational waves from Scorpius X-1 in the second Advanced LIGO observing run with an improved hidden Markov model. Physical Review D, 2019, 100, .	1.6	46

#	Article	IF	CITATIONS
91	Vacuum fluctuation force on a rigid Casimir cavity in a gravitational field. Physics Letters, Section A: General, Atomic and Solid State Physics, 2002, 297, 328-333.	0.9	45
92	Upper limits on a stochastic gravitational-wave background using LIGO and Virgo interferometers at 600–1000ÂHz. Physical Review D, 2012, 85, .	1.6	43
93	The NINJA-2 project: detecting and characterizing gravitational waveforms modelled using numerical binary black hole simulations. Classical and Quantum Gravity, 2014, 31, 115004.	1.5	42
94	Highâ€performance modular digital lockâ€in amplifier. Review of Scientific Instruments, 1995, 66, 3697-3702.	0.6	39
95	Searching for stochastic gravitational waves using data from the two colocated LIGO Hanford detectors. Physical Review D, 2015, 91, .	1.6	39
96	Narrow-band search of continuous gravitational-wave signals from Crab and Vela pulsars in Virgo VSR4 data. Physical Review D, 2015, 91, .	1.6	37
97	Results from the ARGO-YBJ test experiment. Astroparticle Physics, 2002, 17, 151-165.	1.9	35
98	Search for gravitational radiation from intermediate mass black hole binaries in data from the second LIGO-Virgo joint science run. Physical Review D, 2014, 89, .	1.6	35
99	Results from the analysis of data collected with a 50m2 RPC carpet at YangBaJing. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2000, 456, 121-125.	0.7	34
100	Implementation of an \$mathcal{F}\$-statistic all-sky search for continuous gravitational waves in Virgo VSR1 data. Classical and Quantum Gravity, 2014, 31, 165014.	1.5	34
101	Search for Gravitational Waves Associated with <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mi>î³</mml:mi>-ray Bursts Detected by the Interplanetary Network. Physical Review Letters, 2014, 113, 011102.</mml:math 	2.9	32
102	First low frequency all-sky search for continuous gravitational wave signals. Physical Review D, 2016, 93, .	1.6	32
103	The Virgo 3 km interferometer for gravitational wave detection. Journal of Optics, 2008, 10, 064009.	1.5	31
104	Search for long-lived gravitational-wave transients coincident with long gamma-ray bursts. Physical Review D, 2013, 88, .	1.6	31
105	The VIRGO large mirrors: a challenge for low loss coatings. Classical and Quantum Gravity, 2004, 21, S935-S945.	1.5	30
106	A Fermi Gamma-Ray Burst Monitor Search for Electromagnetic Signals Coincident with Gravitational-wave Candidates in Advanced LIGO's First Observing Run. Astrophysical Journal, 2019, 871, 90.	1.6	30
107	Status and perspectives of the Virgo gravitational wave detector. Journal of Physics: Conference Series, 2010, 203, 012074.	0.3	29
108	Methods and results of a search for gravitational waves associated with gamma-ray bursts using the GEO 600, LIGO, and Virgo detectors. Physical Review D, 2014, 89, .	1.6	29

#	Article	IF	CITATIONS
109	All-sky search for long-duration gravitational wave transients with initial LIGO. Physical Review D, 2016, 93, .	1.6	29
110	An improvement in the VIRGO Super Attenuator for interferometric detection of gravitational waves: The use of a magnetic antispring. Review of Scientific Instruments, 1993, 64, 310-313.	0.6	28
111	Search for gravitational waves associated with GRB 050915a using the Virgo detector. Classical and Quantum Gravity, 2008, 25, 225001.	1.5	28
112	The Seismic Superattenuators of the Virgo Gravitational Waves Interferometer. Journal of Low Frequency Noise Vibration and Active Control, 2011, 30, 63-79.	1.3	28
113	Search for gravitational wave ringdowns from perturbed intermediate mass black holes in LIGO-Virgo data from 2005–2010. Physical Review D, 2014, 89, .	1.6	28
114	The Advanced Virgo detector. Journal of Physics: Conference Series, 2015, 610, 012014.	0.3	27
115	Constraints on dark photon dark matter using data from LIGO's and Virgo's third observing run. Physical Review D, 2022, 105, .	1.6	27
116	Properties of seismic noise at the Virgo site. Classical and Quantum Gravity, 2004, 21, S433-S440.	1.5	25
117	GRAVITATIONAL EFFECTS ON A RIGID CASIMIR CAVITY. International Journal of Modern Physics A, 2002, 17, 804-807.	0.5	24
118	The commissioning of the central interferometer of the Virgo gravitational wave detector. Astroparticle Physics, 2004, 21, 1-22.	1.9	22
119	A local control system for the test masses of the Virgo gravitational wave detector. Astroparticle Physics, 2004, 20, 617-628.	1.9	22
120	The variable finesse locking technique. Classical and Quantum Gravity, 2006, 23, S85-S89.	1.5	22
121	Towards weighing the condensation energy to ascertain the Archimedes force of vacuum. Physical Review D, 2014, 90, .	1.6	22
122	Effects of misalignments and beam jitters in interferometric gravitational wave detectors. Physics Letters, Section A: General, Atomic and Solid State Physics, 1996, 217, 90-96.	0.9	21
123	Virgo upgrade investigations. Journal of Physics: Conference Series, 2006, 32, 223-229.	0.3	21
124	Application of a Hough search for continuous gravitational waves on data from the fifth LIGO science run. Classical and Quantum Gravity, 2014, 31, 085014.	1.5	21
125	Low noise cryogenic system for the measurement of the Casimir energy in rigid cavities. Journal of Physics A: Mathematical and Theoretical, 2008, 41, 164023.	0.7	20
126	Calibration of advanced Virgo and reconstruction of the detector strain h(t) during the observing run O3. Classical and Quantum Gravity, 2022, 39, 045006.	1.5	20

#	Article	IF	CITATIONS
127	First locking of the Virgo central area interferometer with suspension hierarchical control. Astroparticle Physics, 2004, 20, 629-640.	1.9	19
128	Gravitational waves by gamma-ray bursts and the Virgo detector: the case of GRB 050915a. Classical and Quantum Gravity, 2007, 24, S671-S679.	1.5	19
129	Search for continuous gravitational waves from neutron stars in globular cluster NGC 6544. Physical Review D, 2017, 95, .	1.6	19
130	Fringe-counting technique used to lock a suspended interferometer. Applied Optics, 1994, 33, 1194.	2.1	18
131	All-sky, all-frequency directional search for persistent gravitational waves from Advanced LIGO's and Advanced Virgo's first three observing runs. Physical Review D, 2022, 105, .	1.6	18
132	Search of the Orion spur for continuous gravitational waves using a loosely coherent algorithm on data from LIGO interferometers. Physical Review D, 2016, 93, .	1.6	17
133	A Seismological Study of the Sos Enattos Area—the Sardinia Candidate Site for the Einstein Telescope. Seismological Research Letters, 2021, 92, 352-364.	0.8	17
134	Status of the VIRGO experiment. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 1995, 360, 258-262.	0.7	16
135	The Virgo automatic alignment system. Classical and Quantum Gravity, 2006, 23, S91-S101.	1.5	16
136	Lock acquisition of the Virgo gravitational wave detector. Astroparticle Physics, 2008, 30, 29-38.	1.9	16
137	Gravitational wave burst search in the Virgo C7 data. Classical and Quantum Gravity, 2009, 26, 085009.	1.5	16
138	Sensitivity of a rigid small interferometer in the 10 Hz frequency region. Physics Letters, Section A: General, Atomic and Solid State Physics, 1992, 163, 15-20.	0.9	15
139	VIRGO: a large interferometer for gravitational wave detection started its first scientific run. Journal of Physics: Conference Series, 2008, 120, 032007.	0.3	15
140	Characterization of the Sos Enattos site for the Einstein Telescope. Journal of Physics: Conference Series, 2020, 1468, 012242.	0.3	15
141	High accuracy digital temperature control for a laser diode. Review of Scientific Instruments, 1995, 66, 4051-4054.	0.6	14
142	Last stage control and mechanical transfer function measurement of the VIRGO suspensions. Review of Scientific Instruments, 2002, 73, 2143-2149.	0.6	14
143	Low-loss coatings for the VIRGO large mirrors. , 2004, , .		14
144	Search for transient gravitational waves in coincidence with short-duration radio transients during 2007–2013. Physical Review D, 2016, 93, .	1.6	14

#	Article	IF	CITATIONS
145	Search for inspiralling binary events in the Virgo Engineering Run data. Classical and Quantum Gravity, 2004, 21, S709-S716.	1.5	13
146	Coincidence analysis between periodic source candidates in C6 and C7 Virgo data. Classical and Quantum Gravity, 2007, 24, S491-S499.	1.5	13
147	Measurement of the optical parameters of the Virgo interferometer. Applied Optics, 2007, 46, 3466.	2.1	13
148	First joint gravitational wave search by the AURIGA–EXPLORER–NAUTILUS–Virgo Collaboration. Classical and Quantum Gravity, 2008, 25, 205007.	1.5	13
149	Performance of the Virgo interferometer longitudinal control system during the second science run. Astroparticle Physics, 2011, 34, 521-527.	1.9	13
150	Adaptive optics approach for prefiltering of geometrical fluctuations of the input laser beam of an interferometric gravitational waves detector. Review of Scientific Instruments, 2003, 74, 2570-2574.	0.6	12
151	An optical readout system for the drag-free control of LISA. Classical and Quantum Gravity, 2005, 22, S279-S285.	1.5	12
152	The NoEMi (Noise Frequency Event Miner) framework. Journal of Physics: Conference Series, 2012, 363, 012037.	0.3	12
153	Performance of the RPCs for the ARGO detector operated at the YangBaJing laboratory (4300m a.s.l.). Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2003, 508, 110-115.	0.7	11
154	Automatic Alignment for the first science run of the Virgo interferometer. Astroparticle Physics, 2010, 33, 131-139.	1.9	11
155	Central heating radius of curvature correction (CHRoCC) for use in large scale gravitational wave interferometers. Classical and Quantum Gravity, 2013, 30, 055017.	1.5	11
156	Progress in a Vacuum Weight Search Experiment. Physics, 2020, 2, 1-13.	0.5	11
157	On the photon Green functions in curved spacetime. Classical and Quantum Gravity, 2004, 21, 647-659.	1.5	10
158	Feasibility of a magnetic suspension for second generation gravitational wave interferometers. Astroparticle Physics, 2004, 21, 325-335.	1.9	10
159	The Virgo Detector. AIP Conference Proceedings, 2005, , .	0.3	10
160	Improving the timing precision for inspiral signals found by interferometric gravitational wave detectors. Classical and Quantum Gravity, 2007, 24, S617-S625.	1.5	10
161	Cleaning the Virgo sampled data for the search of periodic sources of gravitational waves. Classical and Quantum Gravity, 2009, 26, 204002.	1.5	10
162	Reconstruction of the gravitational wave signal h (t) during the Virgo science runs and independent validation with a photon calibrator. Classical and Quantum Gravity, 2014, 31, 165013.	1.5	10

#	Article	IF	CITATIONS
163	Status of VIRGO. Classical and Quantum Gravity, 2003, 20, S609-S616.	1.5	9
164	Analysis of noise lines in the Virgo C7 data. Classical and Quantum Gravity, 2007, 24, S433-S443.	1.5	9
165	Status of coalescing binaries search activities in Virgo. Classical and Quantum Gravity, 2007, 24, 5767-5775.	1.5	9
166	Results of Measuring the Influence of Casimir Energy on Superconducting Phase Transitions. Journal of Superconductivity and Novel Magnetism, 2012, 25, 2557-2565.	0.8	9
167	The advanced Virgo longitudinal control system for the O2 observing run. Astroparticle Physics, 2020, 116, 102386.	1.9	9
168	Digital alignment system for a laser beam. Physics Letters, Section A: General, Atomic and Solid State Physics, 1994, 193, 15-20.	0.9	8
169	Vertical and horizontal transfer function measurements on a magnetic gas spring. Review of Scientific Instruments, 1995, 66, 115-119.	0.6	8
170	Casimir energy and the superconducting phase transition. Journal of Physics A, 2006, 39, 6161-6171.	1.6	8
171	Noise studies during the first Virgo science run and after. Classical and Quantum Gravity, 2008, 25, 184003.	1.5	8
172	Laser with an in-loop relative frequency stability of <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:mn>1.0</mml:mn><mml:mo>×</mml:mo><mml:msup><mml:mrow><m a 100-ms time scale for gravitational-wave detection. Physical Review A, 2009, 79, .</m </mml:mrow></mml:msup></mml:mrow></mml:math 	ml:mn>10	
173	Virgo calibration and reconstruction of the gravitationnal wave strain during VSR1. Journal of Physics: Conference Series, 2010, 228, 012015.	0.3	8
174	A state observer for the Virgo inverted pendulum. Review of Scientific Instruments, 2011, 82, 094502.	0.6	8
175	Virgo: Very wide band interferometric gravitational wave antenna. Nuclear Physics, Section B, Proceedings Supplements, 1992, 28, 54-60.	0.5	7
176	Data analysis methods for non-Gaussian, nonstationary and nonlinear features and their application to VIRGO. Classical and Quantum Gravity, 2003, 20, S915-S924.	1.5	7
177	NAP: a tool for noise data analysis. Application to Virgo engineering runs. Classical and Quantum Gravity, 2005, 22, S1041-S1049.	1.5	7
178	The status of coalescing binaries search code in Virgo, and the analysis of C5 data. Classical and Quantum Gravity, 2006, 23, S187-S196.	1.5	7
179	The Virgo interferometric gravitational antenna. Optics and Lasers in Engineering, 2007, 45, 478-487.	2.0	7
180	The Real-Time Distributed Control of the Virgo Interferometric Detector of Gravitational Waves. IEEE Transactions on Nuclear Science, 2008, 55, 302-310.	1.2	7

#	Article	IF	CITATIONS
181	The Archimedes experiment. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2016, 824, 646-647.	0.7	7
182	High-bandwidth beam balance for vacuum-weight experiment and Newtonian noise subtraction. European Physical Journal Plus, 2021, 136, 1.	1.2	7
183	A lower limit for Newtonian-noise models of the Einstein Telescope. European Physical Journal Plus, 2022, 137, .	1.2	7
184	Digital error-signal extraction technique for real-time automatic control of optical interferometers. Applied Optics, 1995, 34, 8100.	2.1	6
185	An optical readout system for the LISA gravitational reference sensors. Classical and Quantum Gravity, 2004, 21, S621-S627.	1.5	6
186	A simple line detection algorithm applied to Virgo data. Classical and Quantum Gravity, 2005, 22, S1189-S1196.	1.5	6
187	Generation of non-Gaussian flat laser beams. Physics Letters, Section A: General, Atomic and Solid State Physics, 2006, 355, 258-261.	0.9	6
188	The Aladin2 experiment: status and perspectives. Journal of Physics A, 2006, 39, 6153-6159.	1.6	6
189	Automatic Alignment system during the second science run of the Virgo interferometer. Astroparticle Physics, 2011, 34, 327-332.	1.9	6
190	Status of the Advanced Virgo gravitational wave detector. International Journal of Modern Physics A, 2017, 32, 1744003.	0.5	6
191	Results of the Virgo central interferometer commissioning. Classical and Quantum Gravity, 2004, 21, S395-S402.	1.5	5
192	The last-stage suspension of the mirrors for the gravitational wave antenna Virgo. Classical and Quantum Gravity, 2004, 21, S425-S432.	1.5	5
193	Testing the detection pipelines for inspirals with Virgo commissioning run C4 data. Classical and Quantum Gravity, 2005, 22, S1139-S1148.	1.5	5
194	Length Sensing and Control in the Virgo Gravitational Wave Interferometer. IEEE Transactions on Instrumentation and Measurement, 2006, 55, 1985-1995.	2.4	5
195	Data Acquisition System of the Virgo Gravitational Waves Interferometric Detector. IEEE Transactions on Nuclear Science, 2008, 55, 225-232.	1.2	5
196	Characterization of the Virgo seismic environment. Classical and Quantum Gravity, 2012, 29, 025005.	1.5	5
197	Seismic glitchness at Sos Enattos site: impact on intermediate black hole binaries detection efficiency. European Physical Journal Plus, 2021, 136, 1.	1.2	5
198	Picoradiant tiltmeter and direct ground tilt measurements at the Sos Enattos site. European Physical Journal Plus, 2021, 136, 1.	1.2	5

#	Article	IF	CITATIONS
199	Characterization of the seismic field at Virgo and improved estimates of Newtonian-noise suppression by recesses. Classical and Quantum Gravity, 2021, 38, 245007.	1.5	5
200	A coil system for VIRGO providing a uniform magnetic field gradient. Physics Letters, Section A: General, Atomic and Solid State Physics, 1992, 171, 162-166.	0.9	4
201	An adaptive optics approach to the reduction of misalignments and beam jitters in gravitational wave interferometers. Classical and Quantum Gravity, 2002, 19, 1813-1818.	1.5	4
202	A procedure for noise uncoupling in laser interferometry. Classical and Quantum Gravity, 2002, 19, 1529-1536.	1.5	4
203	A first study of environmental noise coupling to the Virgo interferometer. Classical and Quantum Gravity, 2005, 22, S1069-S1077.	1.5	4
204	First adaptive optics control of laser beam based on interferometric phase-front detection. Review of Scientific Instruments, 2005, 76, 083119.	0.6	4
205	Environmental noise studies in Virgo. Journal of Physics: Conference Series, 2006, 32, 80-88.	0.3	4
206	Data quality studies for burst analysis of Virgo data acquired during Weekly Science Runs. Classical and Quantum Gravity, 2007, 24, S415-S422.	1.5	4
207	High sensitivity adaptive optics control of laser beam based on interferometric phase-front detection. Optics and Lasers in Engineering, 2007, 45, 468-470.	2.0	4
208	Control of the laser frequency of the Virgo gravitational wave interferometer with an in-loop relative frequency stability of 1.0 × 10â^21 on a 100 ms time scale. , 2009, , .		4
209	THE VIRGO INTERFEROMETER FOR GRAVITATIONAL WAVE DETECTION. International Journal of Modern Physics D, 2011, 20, 2075-2079.	0.9	4
210	Casimir energy for two and three superconducting coupled cavities: Numerical calculations. European Physical Journal Plus, 2017, 132, 1.	1.2	4
211	Status of Virgo. Journal of Physics: Conference Series, 2006, 39, 32-35.	0.3	3
212	Testing Virgo burst detection tools on commissioning run data. Classical and Quantum Gravity, 2006, 23, S197-S205.	1.5	3
213	Publisher's Note: All-sky search for gravitational-wave bursts in the first joint LIGO-GEO-Virgo run [Phys. Rev. D 81 , 102001 (2010)]. Physical Review D, 2012, 85, .	1.6	3
214	Automated source of squeezed vacuum states driven by finite state machine based software. Review of Scientific Instruments, 2021, 92, 054504.	0.6	3
215	Casimir energy for N superconducting cavities: a model for the YBCO (GdBCO) sample to be used in the Archimedes experiment. European Physical Journal Plus, 2022, 137, .	1.2	3
216	High-speed low-noise digital control system. IEEE Transactions on Nuclear Science, 1994, 41, 194-199.	1.2	2

#	Article	IF	CITATIONS
217	Status of VIRGO. , 2004, 5500, 58.		2
218	Virgo and the worldwide search for gravitational waves. AIP Conference Proceedings, 2005, , .	0.3	2
219	Virgo status and commissioning results. Classical and Quantum Gravity, 2005, 22, S185-S191.	1.5	2
220	Noise monitor tools and their application to Virgo data. Journal of Physics: Conference Series, 2012, 363, 012024.	0.3	2
221	Publisher's Note: Search for gravitational waves from compact binary coalescence in LIGO and Virgo data from S5 and VSR1 [Phys. Rev. D82, 102001 (2010)]. Physical Review D, 2012, 85, .	1.6	2
222	Prospects for observing and localizing gravitational-wave transients with Advanced LIGO, Advanced Virgo and KAGRA. , 2018, 21, 1.		2
223	Study of RPC gas mixtures for the ARGO-YBJ experiment. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2000, 456, 35-39.	0.7	1
224	First results on an adaptive optics pre-mode cleaning system based on interferometric phase-front detection. Classical and Quantum Gravity, 2004, 21, S947-S950.	1.5	1
225	A first test of a sine-Hough method for the detection of pulsars in binary systems using the E4 Virgo engineering run data. Classical and Quantum Gravity, 2004, 21, S717-S727.	1.5	1
226	Low-noise adaptive optics for gravitational wave interferometers. Classical and Quantum Gravity, 2006, 23, 5919-5925.	1.5	1
227	Methods of gravitational wave detection in the VIRGO Interferometer. , 2007, , .		1
228	The Real-time Distributed Control of the Virgo Interferometric Detector of Gravitational Waves. , 2007, , .		1
229	The Aladin2 experiment: Sensitivity study. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2007, 572, 515-517.	0.7	1
230	Gravity of magnetic stresses and energy. Physical Review D, 2008, 77, .	1.6	1
231	Status of the commissioning of the Virgo interferometer. , 2012, , .		1
232	Prospects for Observing and Localizing Gravitational-Wave Transients with Advanced LIGO and Advanced Virgo. , 2016, 19, 1.		1
233	Optimization of multipendular seismic suspensions for interferometric gravitational-wave detectors. Europhysics Letters, 1997, 40, 601-606.	0.7	0
234	A non-linear error signal extraction technique for length control of a Fabry-Perot cavity. Optics Communications, 1999, 161, 287-296.	1.0	0

#	Article	IF	CITATIONS
235	Coupling of mirror tilts with earth gravitational field in long-baseline interferometric gravitational-wave detectors. Physics Letters, Section A: General, Atomic and Solid State Physics, 2000, 268, 235-240.	0.9	0
236	<title>Adaptive Optics correction of geometrical fluctuations of Virgo input laser beam: preliminary results</title> ., 2002, , .		0
237	Interferometric adaptive optics system for laser noise reduction in virgo. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2004, 518, 226-227.	0.7	0
238	Laser interferometric adaptive optics system for a three-meter suspended Michelson interferometer for low-frequency seismic noise measurement. , 2004, 5572, 366.		0
239	Adaptive optics in gravitational wave interferometers. , 2004, , .		0
240	Laser interferometric adaptive optics system as light source of the IDGW-3P interferometer. , 2004, , .		0
241	Interferometric adaptive optics system for laser beam noise control. , 2004, , .		0
242	A parallel in-time analysis system for Virgo Journal of Physics: Conference Series, 2006, 32, 35-43.	0.3	0
243	Normal/independent noise in VIRGO data. Classical and Quantum Gravity, 2006, 23, S829-S836.	1.5	0
244	Fast and low noise adaptive optics system for the correction of micro-aberrations of laser beam. , 2007, , .		0
245	Data Acquisition System of the Virgo Gravitational Waves Interferometric Detector. , 2007, , .		0
246	Adaptive Optics for the control of laser beam in gravitational wave interferometers. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2007, 572, 518-520.	0.7	0
247	A cross-correlation method to search for gravitational wave bursts with AURIGA and Virgo. Classical and Quantum Gravity, 2008, 25, 114046.	1.5	0
248	Novel features of the energy–momentum tensor of a Casimir apparatus in a weak gravitational field. Journal of Physics A: Mathematical and Theoretical, 2008, 41, 164056.	0.7	0
249	Tools for noise characterization in Virgo. Journal of Physics: Conference Series, 2010, 243, 012004.	0.3	0
250	Publisher's Note: Search for gravitational waves from binary black hole inspiral, merger, and ringdown [Phys. Rev. D83, 122005 (2011)]. Physical Review D, 2012, 85, .	1.6	0
251	THE PAST AND THE FUTURE OF DIRECT SEARCH OF GW FROM PULSARS IN THE ERA OF GW ANTENNAS. Acta Polytechnica, 2013, 53, 742-745.	0.3	0
252	Fast and low noise adaptive optics system for the correction of micro-aberrations of laser beam. , 2006, , .		0