Froilán Granero-Moltó

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9487700/publications.pdf

Version: 2024-02-01

34 papers

1,713 citations

471371 17 h-index 454834 30 g-index

36 all docs 36 docs citations

36 times ranked 2960 citing authors

#	Article	IF	CITATIONS
1	The bone marrow niche regulates redox and energy balance in MLL::AF9 leukemia stem cells. Leukemia, 2022, 36, 1969-1979.	3.3	5
2	3D printed bioresorbable scaffolds for articular cartilage tissue engineering: a comparative study between neat polycaprolactone (PCL) and poly(lactide-b-ethylene glycol) (PLA-PEG) block copolymer. Biomedical Materials (Bristol), 2022, 17, 045028.	1.7	2
3	Molecular and Cellular Mechanisms of Delayed Fracture Healing in <i>Mmp10</i> (Stromelysin 2) Knockout Mice. Journal of Bone and Mineral Research, 2021, 36, 2203-2213.	3.1	5
4	Engineering a Humanised Niche to Support Human Haematopoiesis in Mice: Novel Opportunities in Modelling Cancer. Cancers, 2020, 12, 2205.	1.7	3
5	Phase II multicenter randomized controlled clinical trial on the efficacy of intra-articular injection of autologous bone marrow mesenchymal stem cells with platelet rich plasma for the treatment of knee osteoarthritis. Journal of Translational Medicine, 2020, 18, 356.	1.8	48
6	Anisotropic Cryostructured Collagen Scaffolds for Efficient Delivery of RhBMP–2 and Enhanced Bone Regeneration. Materials, 2019, 12, 3105.	1.3	17
7	Periosteumâ€derived mesenchymal progenitor cells in engineered implants promote fracture healing in a criticalâ€size defect rat model. Journal of Tissue Engineering and Regenerative Medicine, 2019, 13, 742-752.	1.3	15
8	Mechanical barriers and transforming growth factor beta inhibitor on epidural fibrosis in a rabbit laminectomy model. Journal of Orthopaedic Surgery and Research, 2018, 13, 72.	0.9	12
9	Autologous bioscaffolds based on different concentrations of platelet rich plasma and synovial fluid as a vehicle for mesenchymal stem cells. Journal of Biomedical Materials Research - Part A, 2018, 106, 377-385.	2.1	3
10	Effect of bone marrow stromal cells in combination with biomaterials in early phases of distraction osteogenesis: An experimental study in a rabbit femur model. Injury, 2018, 49, 1979-1986.	0.7	10
11	Tissue Mimicry in Morphology and Composition Promotes Hierarchical Matrix Remodeling of Invading Stem Cells in Osteochondral and Meniscus Scaffolds. Advanced Materials, 2018, 30, e1706754.	11.1	37
12	Intra-articular injection of two different doses of autologous bone marrow mesenchymal stem cells versus hyaluronic acid in the treatment of knee osteoarthritis: long-term follow up of a multicenter randomized controlled clinical trial (phase I/II). Journal of Translational Medicine, 2018, 16, 213.	1.8	97
13	Modulation of Synovial Fluid-Derived Mesenchymal Stem Cells by Intra-Articular and Intraosseous Platelet Rich Plasma Administration. Stem Cells International, 2016, 2016, 1-10.	1.2	20
14	Combination of Intra-Articular and Intraosseous Injections of Platelet Rich Plasma for Severe Knee Osteoarthritis: A Pilot Study. BioMed Research International, 2016, 2016, 1-10.	0.9	55
15	Hypoxia and Reactive Oxygen Species Homeostasis in Mesenchymal Progenitor Cells Define a Molecular Mechanism for Fracture Nonunion. Stem Cells, 2016, 34, 2342-2353.	1.4	24
16	Intra-articular injection of two different doses of autologous bone marrow mesenchymal stem cells versus hyaluronic acid in the treatment of knee osteoarthritis: multicenter randomized controlled clinical trial (phase I/II). Journal of Translational Medicine, 2016, 14, 246.	1.8	238
17	CORR Insights®: Do Mesenchymal Stromal Cells Influence Microscopic Residual or Metastatic Osteosarcoma in a Murine Model?. Clinical Orthopaedics and Related Research, 2016, 474, 716-718.	0.7	O
18	Culture of human bone marrow-derived mesenchymal stem cells on of poly(I-lactic acid) scaffolds: potential application for the tissue engineering of cartilage. Knee Surgery, Sports Traumatology, Arthroscopy, 2013, 21, 1737-1750.	2.3	41

#	Article	IF	CITATIONS
19	Comparison of microCT and an inverse finite element approach for biomechanical analysis: Results in a mesenchymal stem cell therapeutic system for fracture healing. Journal of Biomechanics, 2012, 45, 2164-2170.	0.9	7
20	Systemically delivered insulin-like growth factor-I enhances mesenchymal stem cell-dependent fracture healing. Growth Factors, 2012, 30, 230-241.	0.5	22
21	Goodpasture Antigen-binding Protein (GPBP) Directs Myofibril Formation. Journal of Biological Chemistry, 2011, 286, 35030-35043.	1.6	9
22	Mesenchymal Stem Cells Expressing Insulin-like Growth Factor-I (MSCIGF) Promote Fracture Healing and Restore New Bone Formation in Irs1 Knockout Mice: Analyses of MSCIGF Autocrine and Paracrine Regenerative Effects. Stem Cells, 2011, 29, 1537-1548.	1.4	79
23	Autocrine Effects of Mesenchymal Stem Cells Expressing IGF-I Rescue the Fracture-Healing Defects of Irs1 Knockout Mice., 2011,, OR12-5-OR12-5.		1
24	Quantifying mechanical properties in a murine fracture healing system using inverse modeling: preliminary work. Proceedings of SPIE, 2010, , .	0.8	0
25	Mesenchymal stem cells at the intersection of cell and gene therapy. Expert Opinion on Biological Therapy, 2010, 10, 1663-1679.	1.4	88
26	Use of glycol chitosan modified by $5\hat{l}^2$ -cholanic acid nanoparticles for the sustained release of proteins during murine embryonic limb skeletogenesis. Journal of Controlled Release, 2010, 144, 101-108.	4.8	19
27	A finite element inverse analysis to assess functional improvement during the fracture healing process. Journal of Biomechanics, 2010, 43, 557-562.	0.9	18
28	Quantifying Mechanical Properties in a Murine Fracture Healing System Using an Inverse Geometric Nonlinear Elasticity Modeling Framework. Lecture Notes in Computer Science, 2010, , 29-37.	1.0	0
29	Subcellular localization of IRS-1 in IGF-l-mediated chondrogenic proliferation, differentiation and hypertrophy of bone marrow mesenchymal stem cells. Growth Factors, 2009, 27, 309-320.	0.5	22
30	Regenerative Effects of Transplanted Mesenchymal Stem Cells in Fracture Healing. Stem Cells, 2009, 27, 1887-1898.	1.4	460
31	Role of mesenchymal stem cells in regenerative medicine: application to bone and cartilage repair. Expert Opinion on Biological Therapy, 2008, 8, 255-268.	1.4	149
32	Goodpasture Antigen-binding Protein Is a Soluble Exportable Protein That Interacts with Type IV Collagen. Journal of Biological Chemistry, 2008, 283, 30246-30255.	1.6	26
33	Goodpasture Antigen-binding Protein and Its Spliced Variant, Ceramide Transfer Protein, Have Different Functions in the Modulation of Apoptosis during Zebrafish Development. Journal of Biological Chemistry, 2008, 283, 20495-20504.	1.6	26
34	TGF- \hat{l}^2 signaling is essential for joint morphogenesis. Journal of Cell Biology, 2007, 177, 1105-1117.	2.3	155