Min Hu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9487421/publications.pdf Version: 2024-02-01

		8181	11939
340	23,361	76	134
papers	citations	h-index	g-index
377	377	377	14080
all docs	docs citations	times ranked	citing authors

MIN HII

#	Article	IF	CITATIONS
1	Elucidating severe urban haze formation in China. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 17373-17378.	7.1	1,328
2	Persistent sulfate formation from London Fog to Chinese haze. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 13630-13635.	7.1	1,044
3	Formation of Urban Fine Particulate Matter. Chemical Reviews, 2015, 115, 3803-3855.	47.7	988
4	Nucleation and Growth of Nanoparticles in the Atmosphere. Chemical Reviews, 2012, 112, 1957-2011.	47.7	938
5	Ultrafine particles in cities. Environment International, 2014, 66, 1-10.	10.0	483
6	Markedly enhanced absorption and direct radiative forcing of black carbon under polluted urban environments. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 4266-4271.	7.1	453
7	A highâ€resolution ammonia emission inventory in China. Global Biogeochemical Cycles, 2012, 26, .	4.9	401
8	Air pollutant emissions from Chinese households: A major and underappreciated ambient pollution source. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 7756-7761.	7.1	378
9	Association Between Changes in Air Pollution Levels During the Beijing Olympics and Biomarkers of Inflammation and Thrombosis in Healthy Young Adults. JAMA - Journal of the American Medical Association, 2012, 307, 2068-78.	7.4	330
10	Measurement of emissions of fine particulate organic matter from Chinese cooking. Atmospheric Environment, 2004, 38, 6557-6564.	4.1	281
11	Particle number size distribution in the urban atmosphere of Beijing, China. Atmospheric Environment, 2008, 42, 7967-7980.	4.1	264
12	Chemical composition, sources, and aging process of submicron aerosols in Beijing: Contrast between summer and winter. Journal of Geophysical Research D: Atmospheres, 2016, 121, 1955-1977.	3.3	259
13	When Aerosol Sulfate Goes Up, So Does Oxalate:Â Implication for the Formation Mechanisms of Oxalate. Environmental Science & Technology, 2005, 39, 128-133.	10.0	258
14	New particle formation in Beijing, China: Statistical analysis of a 1-year data set. Journal of Geophysical Research, 2007, 112, .	3.3	257
15	A review of single aerosol particle studies in the atmosphere of East Asia: morphology, mixing state, source, and heterogeneous reactions. Journal of Cleaner Production, 2016, 112, 1330-1349.	9.3	235
16	Volatile organic compounds (VOCs) in urban air: How chemistry affects the interpretation of positive matrix factorization (PMF) analysis. Journal of Geophysical Research, 2012, 117, .	3.3	207
17	Inflammatory and Oxidative Stress Responses of Healthy Young Adults to Changes in Air Quality during the Beijing Olympics. American Journal of Respiratory and Critical Care Medicine, 2012, 186, 1150-1159.	5.6	200
18	Fine particle pH during severe haze episodes in northern China. Geophysical Research Letters, 2017, 44, 5213-5221.	4.0	193

#	Article	IF	CITATIONS
19	Chemical Compositions of Fine Particulate Organic Matter Emitted from Chinese Cooking. Environmental Science & Technology, 2007, 41, 99-105.	10.0	184
20	Submicron aerosol analysis and organic source apportionment in an urban atmosphere in Pearl River Delta of China using high-resolution aerosol mass spectrometry. Journal of Geophysical Research, 2011, 116, .	3.3	182
21	Fine Particle Emissions from On-Road Vehicles in the Zhujiang Tunnel, China. Environmental Science & Technology, 2008, 42, 4461-4466.	10.0	181
22	Chronic exposure to air pollution particles increases the risk of obesity and metabolic syndrome: findings from a natural experiment in Beijing. FASEB Journal, 2016, 30, 2115-2122.	0.5	181
23	Wintertime photochemistry in Beijing: observations of RO _{<i>x</i>} radical concentrations in the North China Plain during the BEST-ONE campaign. Atmospheric Chemistry and Physics, 2018, 18, 12391-12411.	4.9	177
24	Acute Respiratory Inflammation in Children and Black Carbon in Ambient Air before and during the 2008 Beijing Olympics. Environmental Health Perspectives, 2011, 119, 1507-1512.	6.0	173
25	Size distributions and formation of ionic species in atmospheric particulate pollutants in Beijing, China: 1—inorganic ions. Atmospheric Environment, 2003, 37, 2991-3000.	4.1	171
26	Primary Sources and Secondary Formation of Organic Aerosols in Beijing, China. Environmental Science & Technology, 2012, 46, 9846-9853.	10.0	170
27	A comparative study of the organic matter in PM2.5 from three Chinese megacities in three different climatic zones. Atmospheric Environment, 2006, 40, 3983-3994.	4.1	168
28	High N ₂ O ₅ Concentrations Observed in Urban Beijing: Implications of a Large Nitrate Formation Pathway. Environmental Science and Technology Letters, 2017, 4, 416-420.	8.7	167
29	Annual variation of particulate organic compounds in PM2.5 in the urban atmosphere of Beijing. Atmospheric Environment, 2006, 40, 2449-2458.	4.1	162
30	Seasonal variation of ionic species in fine particles at Qingdao, China. Atmospheric Environment, 2002, 36, 5853-5859.	4.1	148
31	Fast Photochemistry in Wintertime Haze: Consequences for Pollution Mitigation Strategies. Environmental Science & Technology, 2019, 53, 10676-10684.	10.0	147
32	Submicrometer Particles Are in the Liquid State during Heavy Haze Episodes in the Urban Atmosphere of Beijing, China. Environmental Science and Technology Letters, 2017, 4, 427-432.	8.7	139
33	Acidic gases, ammonia and water-soluble ions in PM2.5 at a coastal site in the Pearl River Delta, China. Atmospheric Environment, 2008, 42, 6310-6320.	4.1	138
34	Mixing state of elemental carbon and non-light-absorbing aerosol components derived from in situ particle optical properties at Xinken in Pearl River Delta of China. Journal of Geophysical Research, 2006, 111, .	3.3	132
35	Characteristics of organic matter in PM2.5 in Shanghai. Chemosphere, 2006, 64, 1393-1400.	8.2	132
36	An unexpected catalyst dominates formation and radiative forcing of regional haze. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 3960-3966.	7.1	132

Міл Ни

#	Article	IF	CITATIONS
37	Concentrations and chemical compositions of fine particles (PM2.5) during haze and non-haze days in Beijing. Atmospheric Research, 2016, 174-175, 62-69.	4.1	131
38	Characteristics of aerosol size distributions and new particle formation in the summer in Beijing. Journal of Geophysical Research, 2009, 114, .	3.3	128
39	Seasonal variations in high time-resolved chemical compositions, sources, and evolution of atmospheric submicron aerosols in the megacity Beijing. Atmospheric Chemistry and Physics, 2017, 17, 9979-10000.	4.9	127
40	The formation of nitro-aromatic compounds under high NO _{<i>x</i>} and anthropogenic VOC conditions in urban Beijing, China. Atmospheric Chemistry and Physics, 2019, 19, 7649-7665.	4.9	127
41	Estimation of Size-Resolved Ambient Particle Density Based on the Measurement of Aerosol Number, Mass, and Chemical Size Distributions in the Winter in Beijing. Environmental Science & Technology, 2012, 46, 9941-9947.	10.0	124
42	Ambient bioaerosol particle dynamics observed during haze and sunny days in Beijing. Science of the Total Environment, 2016, 550, 751-759.	8.0	123
43	Exploring atmospheric free-radical chemistry in China: the self-cleansing capacity and the formation of secondary air pollution. National Science Review, 2019, 6, 579-594.	9.5	123
44	Remarkable nucleation and growth of ultrafine particles from vehicular exhaust. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 3427-3432.	7.1	122
45	Rapid SO ₂ emission reductions significantly increase tropospheric ammonia concentrations over the North China Plain. Atmospheric Chemistry and Physics, 2018, 18, 17933-17943.	4.9	121
46	PM _{2.5} Constituents and Oxidative DNA Damage in Humans. Environmental Science & Technology, 2009, 43, 4757-4762.	10.0	118
47	Mixture of sulfate and nitrate in coastal atmospheric aerosols: individual particle studies in Qingdao (36°04′N, 120°21′E), China. Atmospheric Environment, 2000, 34, 2669-2679.	4.1	116
48	Seasonal and diurnal variations of organic carbon in PM _{2.5} in Beijing and the estimation of secondary organic carbon. Journal of Geophysical Research, 2009, 114, .	3.3	116
49	Potential contribution of new particle formation to cloud condensation nuclei in Beijing. Atmospheric Environment, 2011, 45, 6070-6077.	4.1	116
50	Explicit diagnosis of the local ozone production rate and the ozone-NOx-VOC sensitivities. Science Bulletin, 2018, 63, 1067-1076.	9.0	116
51	Aerosol number size distribution and new particle formation at a rural/coastal site in Pearl River Delta (PRD) of China. Atmospheric Environment, 2008, 42, 6275-6283.	4.1	115
52	Global analysis of continental boundary layer new particle formation based on long-term measurements. Atmospheric Chemistry and Physics, 2018, 18, 14737-14756.	4.9	113
53	Maximum efficiency in the hydroxyl-radical-based self-cleansing of the troposphere. Nature Geoscience, 2014, 7, 559-563.	12.9	110
54	Highly time-resolved carbonaceous aerosol characterization in Yangtze River Delta of China: Composition, mixing state and secondary formation. Atmospheric Environment, 2013, 64, 200-207.	4.1	109

#	Article	IF	CITATIONS
55	Development and validation of a cryogen-free automatic gas chromatograph system (GC-MS/FID) for online measurements of volatile organic compounds. Analytical Methods, 2014, 6, 9424-9434.	2.7	108
56	Personal exposure to particulate PAHs and anthraquinone and oxidative DNA damages in humans. Chemosphere, 2010, 81, 1280-1285.	8.2	106
57	New particle formation in China: Current knowledge and further directions. Science of the Total Environment, 2017, 577, 258-266.	8.0	106
58	Seasonal pollution characteristics of organic compounds in atmospheric fine particles in Beijing. Science of the Total Environment, 2006, 359, 167-176.	8.0	105
59	Comparisons of Ultrafine and Fine Particles in Their Associations with Biomarkers Reflecting Physiological Pathways. Environmental Science & Technology, 2014, 48, 5264-5273.	10.0	105
60	Air Pollution and Autonomic and Vascular Dysfunction in Patients With Cardiovascular Disease: Interactions of Systemic Inflammation, Overweight, and Gender. American Journal of Epidemiology, 2012, 176, 117-126.	3.4	103
61	Size distribution and source analysis of ionic compositions of aerosols in polluted periods at Xinken in Pearl River Delta (PRD) of China. Atmospheric Environment, 2008, 42, 6284-6295.	4.1	100
62	Size distributions and formation of ionic species in atmospheric particulate pollutants in Beijing, China: 2—dicarboxylic acids. Atmospheric Environment, 2003, 37, 3001-3007.	4.1	98
63	Light absorption of black carbon aerosol and its enhancement by mixing state in an urban atmosphere in South China. Atmospheric Environment, 2013, 69, 118-123.	4.1	98
64	Explosive Secondary Aerosol Formation during Severe Haze in the North China Plain. Environmental Science & Technology, 2021, 55, 2189-2207.	10.0	96
65	Introduction to the special issue "In-depth study of air pollution sources and processes within Beijing and its surrounding region (APHH-Beijing)― Atmospheric Chemistry and Physics, 2019, 19, 7519-7546.	4.9	95
66	5-Year study of rainwater chemistry in a coastal mega-city in South China. Atmospheric Research, 2010, 97, 185-193.	4.1	93
67	Optical properties of atmospheric aerosols obtained by in situ and remote measurements during 2006 Campaign of Air Quality Research in Beijing (CAREBeijingâ€2006). Journal of Geophysical Research, 2009, 114, .	3.3	91
68	Sub-micrometer particulate air pollution and cardiovascular mortality in Beijing, China. Science of the Total Environment, 2011, 409, 5196-5204.	8.0	90
69	Molecular Characterization of Nitrogen-Containing Organic Compounds in Humic-like Substances Emitted from Straw Residue Burning. Environmental Science & Technology, 2017, 51, 5951-5961.	10.0	90
70	Breath-, air- and surface-borne SARS-CoV-2 in hospitals. Journal of Aerosol Science, 2021, 152, 105693.	3.8	89
71	Chemical characterization of water-soluble organic acids in PM in Beijing, China. Atmospheric Environment, 2005, 39, 2819-2827.	4.1	88
72	Size Distribution Characteristics of Elemental Carbon Emitted from Chinese Vehicles:Â Results of a Tunnel Study and Atmospheric Implications. Environmental Science & Technology, 2006, 40, 5355-5360.	10.0	88

#	Article	IF	CITATIONS
73	Research on the hygroscopic properties of aerosols by measurement and modeling during CAREBeijingâ $\textcircled{2}006$. Journal of Geophysical Research, 2009, 114, .	3.3	88
74	Size segregated water uptake of the urban submicrometer aerosol in Beijing. Atmospheric Environment, 2009, 43, 1578-1589.	4.1	86
75	Occurrence of atmospheric nitrous acid in the urban area of Beijing (China). Science of the Total Environment, 2013, 447, 210-224.	8.0	84
76	The secondary formation of organosulfates under interactions between biogenic emissions and anthropogenic pollutants in summer in Beijing. Atmospheric Chemistry and Physics, 2018, 18, 10693-10713.	4.9	84
77	Size distribution of particulate polycyclic aromatic hydrocarbons in fresh combustion smoke and ambient air: A review. Journal of Environmental Sciences, 2020, 88, 370-384.	6.1	84
78	Key Role of Nitrate in Phase Transitions of Urban Particles: Implications of Important Reactive Surfaces for Secondary Aerosol Formation. Journal of Geophysical Research D: Atmospheres, 2018, 123, 1234-1243.	3.3	81
79	A Comprehensive Model Test of the HONO Sources Constrained to Field Measurements at Rural North China Plain. Environmental Science & Technology, 2019, 53, 3517-3525.	10.0	81
80	Chemical characteristics and source apportionment of PM2.5 during the harvest season in eastern China's agricultural regions. Atmospheric Environment, 2014, 92, 442-448.	4.1	80
81	A review of experimental techniques for aerosol hygroscopicity studies. Atmospheric Chemistry and Physics, 2019, 19, 12631-12686.	4.9	80
82	High Levels of Daytime Molecular Chlorine and Nitryl Chloride at a Rural Site on the North China Plain. Environmental Science & Technology, 2017, 51, 9588-9595.	10.0	78
83	New insight into PM2.5 pollution patterns in Beijing based on one-year measurement of chemical compositions. Science of the Total Environment, 2018, 621, 734-743.	8.0	78
84	Size-Segregated Particle Number Concentrations and Respiratory Emergency Room Visits in Beijing, China. Environmental Health Perspectives, 2011, 119, 508-513.	6.0	75
85	Improved aerosol correction for OMI tropospheric NO ₂ retrieval over East Asia: constraint from CALIOP aerosol vertical profile. Atmospheric Measurement Techniques, 2019, 12, 1-21.	3.1	75
86	Role of secondary aerosols in haze formation in summer in the Megacity Beijing. Journal of Environmental Sciences, 2015, 31, 51-60.	6.1	74
87	Characterising low-cost sensors in highly portable platforms to quantify personal exposure in diverse environments. Atmospheric Measurement Techniques, 2019, 12, 4643-4657.	3.1	74
88	Mutual promotion between aerosol particle liquid water and particulate nitrate enhancement leads to severe nitrate-dominated particulate matter pollution and low visibility. Atmospheric Chemistry and Physics, 2020, 20, 2161-2175.	4.9	74
89	The molecular distribution of fine particulate organic matter emitted from Western-style fast food cooking. Atmospheric Environment, 2007, 41, 8163-8171.	4.1	73
90	Source apportionment and secondary organic aerosol estimation of PM2.5 in an urban atmosphere in China. Science China Earth Sciences, 2014, 57, 1352-1362.	5.2	73

Min Hu

#	Article	IF	CITATIONS
91	High aerosol load over the Pearl River Delta, China, observed with Raman lidar and Sun photometer. Geophysical Research Letters, 2005, 32, .	4.0	72
92	Malondialdehyde in exhaled breath condensate and urine as a biomarker of air pollution induced oxidative stress. Journal of Exposure Science and Environmental Epidemiology, 2013, 23, 322-327.	3.9	72
93	The trend of surface ozone in Beijing from 2013 to 2019: Indications of the persisting strong atmospheric oxidation capacity. Atmospheric Environment, 2020, 242, 117801.	4.1	72
94	Measuring the morphology and density of internally mixed black carbon with SP2 and VTDMA: new insight into the absorption enhancement of black carbon in the atmosphere. Atmospheric Measurement Techniques, 2016, 9, 1833-1843.	3.1	71
95	Chemical characterization of fine particles from on-road vehicles in the Wutong tunnel in Shenzhen, China. Chemosphere, 2006, 62, 1565-1573.	8.2	69
96	Field Determination of Nitrate Formation Pathway in Winter Beijing. Environmental Science & Technology, 2020, 54, 9243-9253.	10.0	69
97	Aerosol hygroscopicity and its impact on atmospheric visibility and radiative forcing in Guangzhou during the 2006 PRIDE-PRD campaign. Atmospheric Environment, 2012, 60, 59-67.	4.1	68
98	Morphology, composition, and mixing state of primary particles from combustion sources — crop residue, wood, and solid waste. Scientific Reports, 2017, 7, 5047.	3.3	66
99	Estimating emissions from agricultural fires in the North China Plain based on MODIS fire radiative power. Atmospheric Environment, 2015, 112, 326-334.	4.1	65
100	Secondary Formation of Sulfate and Nitrate during a Haze Episode in Megacity Beijing, China. Aerosol and Air Quality Research, 2015, 15, 2246-2257.	2.1	65
101	Variation of CCN activity during new particle formation events in the North China Plain. Atmospheric Chemistry and Physics, 2016, 16, 8593-8607.	4.9	64
102	Efficient N ₂ O ₅ uptake and NO ₃ oxidation in the outflow of urban Beijing. Atmospheric Chemistry and Physics, 2018, 18, 9705-9721.	4.9	64
103	Online gas- and particle-phase measurements of organosulfates, organosulfonates and nitrooxy organosulfates in Beijing utilizing a FIGAERO ToF-CIMS. Atmospheric Chemistry and Physics, 2018, 18, 10355-10371.	4.9	62
104	Formation and Optical Properties of Brown Carbon from Small α-Dicarbonyls and Amines. Environmental Science & Technology, 2019, 53, 117-126.	10.0	62
105	Secondary organic aerosols from anthropogenic volatile organic compounds contribute substantially to air pollution mortality. Atmospheric Chemistry and Physics, 2021, 21, 11201-11224.	4.9	60
106	Particle backscatter, extinction, and lidar ratio profiling with Raman lidar in south and north China. Applied Optics, 2007, 46, 6302.	2.1	59
107	Photochemical smog in China: scientific challenges and implications for air-quality policies. National Science Review, 2016, 3, 401-403.	9.5	58
108	Gasoline aromatics: aÂcritical determinant of urban secondary organic aerosol formation. Atmospheric Chemistry and Physics, 2017, 17, 10743-10752.	4.9	58

#	Article	IF	CITATIONS
109	A comprehensive study of hygroscopic properties of calcium- and magnesium-containing salts: implication for hygroscopicity of mineral dust and sea salt aerosols. Atmospheric Chemistry and Physics, 2019, 19, 2115-2133.	4.9	58
110	The role of meteorological conditions and pollution control strategies in reducing air pollution in Beijing during APEC 2014 and Victory Parade 2015. Atmospheric Chemistry and Physics, 2017, 17, 13921-13940.	4.9	57
111	Primary and secondary organic aerosols in summer 2016 in Beijing. Atmospheric Chemistry and Physics, 2018, 18, 4055-4068.	4.9	57
112	Acidic gases, NH3 and secondary inorganic ions in PM10 during summertime in Beijing, China and their relation to air mass history. Chemosphere, 2009, 76, 1028-1035.	8.2	56
113	Spatial distributions and chemical properties of PM2.5 based on 21 field campaigns at 17 sites in China. Chemosphere, 2016, 159, 480-487.	8.2	55
114	Exploring wintertime regional haze in northeast China: role of coal and biomass burning. Atmospheric Chemistry and Physics, 2020, 20, 5355-5372.	4.9	55
115	Secondary aerosol formation in winter haze over the Beijing-Tianjin-Hebei Region, China. Frontiers of Environmental Science and Engineering, 2021, 15, 1.	6.0	55
116	Air Quality in Selected Megacities. Journal of the Air and Waste Management Association, 2004, 54, 1-73.	1.9	54
117	Chlorine oxidation of VOCs at a semi-rural site in Beijing: significant chlorine liberation from ClNO ₂ and subsequent gas- and particle-phase Cl–VOC production. Atmospheric Chemistry and Physics, 2018, 18, 13013-13030.	4.9	54
118	Potentially Important Contribution of Gas-Phase Oxidation of Naphthalene and Methylnaphthalene to Secondary Organic Aerosol during Haze Events in Beijing. Environmental Science & Technology, 2019, 53, 1235-1244.	10.0	54
119	Quantifying the role of PM2.5 dropping in variations of ground-level ozone: Inter-comparison between Beijing and Los Angeles. Science of the Total Environment, 2021, 788, 147712.	8.0	54
120	Cardiorespiratory biomarker responses in healthy young adults to drastic air quality changes surrounding the 2008 Beijing Olympics. Research Report (health Effects Institute), 2013, , 5-174.	1.6	54
121	Impact of meteorology and energy structure on solvent extractable organic compounds of PM2.5 in Beijing, China. Chemosphere, 2005, 61, 623-632.	8.2	53
122	Daytime HONO formation in the suburban area of the megacity Beijing, China. Science China Chemistry, 2014, 57, 1032-1042.	8.2	53
123	Connection of organics to atmospheric new particle formation and growth at an urban site of Beijing. Atmospheric Environment, 2015, 103, 7-17.	4.1	53
124	Influence of biomass burning from South Asia at a high-altitude mountain receptor site in China. Atmospheric Chemistry and Physics, 2017, 17, 6853-6864.	4.9	53
125	High efficiency of livestock ammonia emission controls in alleviating particulate nitrate during a severe winter haze episode in northern China. Atmospheric Chemistry and Physics, 2019, 19, 5605-5613.	4.9	53
126	Enhancement in Particulate Organic Nitrogen and Light Absorption of Humic-Like Substances over Tibetan Plateau Due to Long-Range Transported Biomass Burning Emissions. Environmental Science & Technology, 2019, 53, 14222-14232.	10.0	52

#	Article	lF	CITATIONS
127	The impact of aerosols on photolysis frequencies and ozone production in Beijing during the 4-year period 2012–2015. Atmospheric Chemistry and Physics, 2019, 19, 9413-9429.	4.9	52
128	Association Between Changes in Exposure to Air Pollution and Biomarkers of Oxidative Stress in Children Before and During the Beijing Olympics. American Journal of Epidemiology, 2015, 181, 575-583.	3.4	50
129	Insight into characteristics and sources of PM2.5 in the Beijing–Tianjin–Hebei region, China. National Science Review, 2015, 2, 257-258.	9.5	49
130	Aerosol size distribution characteristics of organosulfates in the Pearl River Delta region, China. Atmospheric Environment, 2016, 130, 23-35.	4.1	48
131	Quantifying the impacts of inter-city transport on air quality in the Yangtze River Delta urban agglomeration, China: Implications for regional cooperative controls of PM2.5 and O3. Science of the Total Environment, 2021, 779, 146619.	8.0	48
132	Exploring the drivers of the increased ozone production in Beijing in summertime during 2005–2016. Atmospheric Chemistry and Physics, 2020, 20, 15617-15633.	4.9	48
133	OH-Initiated Oxidation of <i>m</i> -Xylene on Black Carbon Aging. Environmental Science & Technology, 2016, 50, 8605-8612.	10.0	47
134	The contributions of biomass burning to primary and secondary organics: A case study in Pearl River Delta (PRD), China. Science of the Total Environment, 2016, 569-570, 548-556.	8.0	47
135	Ageing and hygroscopicity variation of black carbon particles in Beijing measured by a quasi-atmospheric aerosol evolution study (QUALITY) chamber. Atmospheric Chemistry and Physics, 2017, 17, 10333-10348.	4.9	47
136	Comparison of primary aerosol emission and secondary aerosol formation from gasoline direct injection and port fuel injection vehicles. Atmospheric Chemistry and Physics, 2018, 18, 9011-9023.	4.9	47
137	Size-segregated particulate chemical composition in Xinken, Pearl River Delta, China: OC/EC and organic compounds. Atmospheric Environment, 2008, 42, 6296-6309.	4.1	46
138	Decoupled direct sensitivity analysis of regional ozone pollution over the Pearl River Delta during the PRIDE-PRD2004 campaign. Atmospheric Environment, 2011, 45, 4941-4949.	4.1	46
139	Characterization of submicron aerosols influenced by biomass burning at a site in the Sichuan Basin, southwestern China. Atmospheric Chemistry and Physics, 2016, 16, 13213-13230.	4.9	46
140	Exploration of PM _{2.5} sources on the regional scale in the Pearl River Delta based on ME-2 modeling. Atmospheric Chemistry and Physics, 2018, 18, 11563-11580.	4.9	46
141	Ambient nitro-aromatic compounds – biomass burning versus secondary formation in rural China. Atmospheric Chemistry and Physics, 2021, 21, 1389-1406.	4.9	46
142	Formation of particulate sulfate and nitrate over the Pearl River Delta in the fall: Diagnostic analysis using the Community Multiscale Air Quality model. Atmospheric Environment, 2015, 112, 81-89.	4.1	45
143	Using Low-cost sensors to Quantify the Effects of Air Filtration on Indoor and Personal Exposure Relevant PM2.5 Concentrations in Beijing, China. Aerosol and Air Quality Research, 2020, 20, 297-313.	2.1	45
144	Aerosol particles in the developing world; a comparison between New Delhi in India and Beijing in China. Water, Air, and Soil Pollution, 2006, 173, 5-20.	2.4	44

#	Article	IF	CITATIONS
145	Individual particles emitted from gasoline engines: Impact of engine types, engine loads and fuel components. Journal of Cleaner Production, 2017, 149, 461-471.	9.3	44
146	Characteristics of air pollutants inside and outside a primary school classroom in Beijing and respiratory health impact on children. Environmental Pollution, 2019, 255, 113147.	7.5	44
147	Separated status of the natural dust plume and polluted air masses in an Asian dust storm event at coastal areas of China. Journal of Geophysical Research, 2005, 110, n/a-n/a.	3.3	43
148	On secondary new particle formation in China. Frontiers of Environmental Science and Engineering, 2016, 10, 1.	6.0	43
149	PM2.5-bound polycyclic aromatic hydrocarbons and nitro-polycyclic aromatic hydrocarbons inside and outside a primary school classroom in Beijing: Concentration, composition, and inhalation cancer risk. Science of the Total Environment, 2020, 705, 135840.	8.0	43
150	Significant changes in autumn and winter aerosol composition and sources in Beijing from 2012 to 2018: Effects of clean air actions. Environmental Pollution, 2021, 268, 115855.	7.5	43
151	Measurement of inflammation and oxidative stress following drastic changes in air pollution during the Beijing Olympics: a panel study approach. Annals of the New York Academy of Sciences, 2010, 1203, 160-167.	3.8	42
152	Chemical compositions of precipitation and scavenging of particles in Beijing. Science in China Series B: Chemistry, 2005, 48, 265.	0.8	41
153	Assessing the effects of trans-boundary aerosol transport between various city clusters on regional haze episodes in spring over East China. Tellus, Series B: Chemical and Physical Meteorology, 2022, 65, 20052.	1.6	41
154	Modal characteristics of carbonaceous aerosol size distribution in an urban atmosphere of South China. Atmospheric Research, 2011, 100, 51-60.	4.1	40
155	Chemical characterization of size-resolved aerosols in four seasons and hazy days in the megacity Beijing of China. Journal of Environmental Sciences, 2015, 32, 155-167.	6.1	40
156	Variations of fine particle physiochemical properties during a heavy haze episode in the winter of Beijing. Science of the Total Environment, 2016, 571, 103-109.	8.0	40
157	The Cardiopulmonary Effects of Ambient Air Pollution and Mechanistic Pathways: A Comparative Hierarchical Pathway Analysis. PLoS ONE, 2014, 9, e114913.	2.5	39
158	Relative humidity and O ₃ concentration as two prerequisites for sulfate formation. Atmospheric Chemistry and Physics, 2019, 19, 12295-12307.	4.9	39
159	Marine aerosol size distributions in the springtime over China adjacent seas. Atmospheric Environment, 2007, 41, 6784-6796.	4.1	38
160	Volatility measurement of atmospheric submicron aerosols in an urban atmosphere in southern China. Atmospheric Chemistry and Physics, 2018, 18, 1729-1743.	4.9	38
161	Airborne endotoxin in fine particulate matter in Beijing. Atmospheric Environment, 2014, 97, 35-42.	4.1	37
162	Estimation of atmospheric aging time of black carbon particles in the polluted atmosphere over central-eastern China using microphysical process analysis in regional chemical transport model. Atmospheric Environment, 2017, 163, 44-56.	4.1	37

#	Article	IF	CITATIONS
163	Direct emission of nitrous acid (HONO) from gasoline cars in China determined by vehicle chassis dynamometer experiments. Atmospheric Environment, 2017, 169, 89-96.	4.1	37
164	Competition of coagulation sink and source rate: New particle formation in the Pearl River Delta of China. Atmospheric Environment, 2010, 44, 3278-3285.	4.1	36
165	Investigation of carbonyl compound sources at a rural site in the Yangtze River Delta region of China. Journal of Environmental Sciences, 2015, 28, 128-136.	6.1	36
166	Source apportionment of Pb-containing particles in Beijing during January 2013. Environmental Pollution, 2017, 226, 30-40.	7.5	36
167	Bacteria in atmospheric waters: Detection, characteristics and implications. Atmospheric Environment, 2018, 179, 201-221.	4.1	36
168	Estimating halocarbon emissions using measured ratio relative to tracers in China. Atmospheric Environment, 2014, 89, 816-826.	4.1	35
169	Deliquescent phenomena of ambient aerosols on the North China Plain. Geophysical Research Letters, 2016, 43, 8744-8750.	4.0	35
170	Model simulation of NO 3 , N 2 O 5 and ClNO 2 at a rural site in Beijing during CAREBeijing-2006. Atmospheric Research, 2017, 196, 97-107.	4.1	35
171	Secondary Organic Aerosol from Typical Chinese Domestic Cooking Emissions. Environmental Science and Technology Letters, 2021, 8, 24-31.	8.7	35
172	Atmospheric aerosol compositions and sources at two national background sites in northern and southern China. Atmospheric Chemistry and Physics, 2016, 16, 10283-10297.	4.9	34
173	Temporal and spatial distribution of PM2.5 chemical composition in a coastal city of Southeast China. Science of the Total Environment, 2017, 605-606, 337-346.	8.0	33
174	Interactions between water vapor and atmospheric aerosols have key roles in air quality and climate change. National Science Review, 2018, 5, 452-454.	9.5	33
175	Acute and chronic effects of ambient fine particulate matter on preterm births in Beijing, China: A time-series model. Science of the Total Environment, 2019, 650, 1671-1677.	8.0	33
176	Chemical characteristics of PM10 during the summer in the mega-city Guangzhou, China. Atmospheric Research, 2014, 137, 25-34.	4.1	32
177	Respiratory Inflammation and Short-Term Ambient Air Pollution Exposures in Adult Beijing Residents with and without Prediabetes: A Panel Study. Environmental Health Perspectives, 2020, 128, 67004.	6.0	31
178	Modelling air quality during the EXPLORE-YRD campaign – Part I. Model performance evaluation and impacts of meteorological inputs and grid resolutions. Atmospheric Environment, 2021, 246, 118131.	4.1	31
179	Chemical Production of Oxygenated Volatile Organic Compounds Strongly Enhances Boundary-Layer Oxidation Chemistry and Ozone Production. Environmental Science & Technology, 2021, 55, 13718-13727.	10.0	31
180	Ground-based on-line measurements of peroxyacetyl nitrate (PAN) and peroxypropionyl nitrate (PPN) in the Pearl River Delta, China. International Journal of Environmental Analytical Chemistry, 2010, 90, 548-559.	3.3	30

#	Article	IF	CITATIONS
181	Effects of NO x and VOCs from five emission sources on summer surface O3 over the Beijing-Tianjin-Hebei region. Advances in Atmospheric Sciences, 2014, 31, 787-800.	4.3	30
182	Aldehydes in relation to air pollution sources: A case study around the Beijing Olympics. Atmospheric Environment, 2015, 109, 61-69.	4.1	30
183	Modelling air quality during the EXPLORE-YRD campaign – Part II. Regional source apportionment of ozone and PM2.5. Atmospheric Environment, 2021, 247, 118063.	4.1	30
184	Observational Evidence for the Involvement of Dicarboxylic Acids in Particle Nucleation. Environmental Science and Technology Letters, 2020, 7, 388-394.	8.7	30
185	Direct radiative effect of carbonaceous aerosols from crop residue burning during the summer harvest season in East China. Atmospheric Chemistry and Physics, 2017, 17, 5205-5219.	4.9	29
186	Current challenges of improving visibility due to increasing nitrate fraction in PM2.5 during the haze days in Beijing, China. Environmental Pollution, 2021, 290, 118032.	7.5	29
187	Haze Air Pollution Health Impacts of Breath-Borne VOCs. Environmental Science & Technology, 2022, 56, 8541-8551.	10.0	29
188	Pollution characteristics of atmospheric fine particles and their secondary components in the atmosphere of Shenzhen in summer and in winter. Science in China Series B: Chemistry, 2006, 49, 466-474.	0.8	28
189	Evolution of particle number size distribution in an urban atmosphere during episodes of heavy pollution and new particle formation. Science China Earth Sciences, 2011, 54, 1772-1778.	5.2	28
190	Characterization of Aerosol Aging Potentials at Suburban Sites in Northern and Southern China Utilizing a Potential Aerosol Mass (Go:PAM) Reactor and an Aerosol Mass Spectrometer. Journal of Geophysical Research D: Atmospheres, 2019, 124, 5629-5649.	3.3	28
191	Improving new particle formation simulation by coupling a volatility-basis set (VBS) organic aerosol module in NAQPMS+APM. Atmospheric Environment, 2019, 204, 1-11.	4.1	28
192	Aerosol optical properties under different pollution levels in the Pearl River Delta (PRD) region of China. Journal of Environmental Sciences, 2020, 87, 49-59.	6.1	28
193	NO3 and N2O5 chemistry at a suburban site during the EXPLORE-YRD campaign in 2018. Atmospheric Environment, 2020, 224, 117180.	4.1	28
194	Comparative Study of Particulate Organosulfates in Contrasting Atmospheric Environments: Field Evidence for the Significant Influence of Anthropogenic Sulfate and NOx. Environmental Science and Technology Letters, 2020, 7, 787-794.	8.7	28
195	Characterizing chemical composition and light absorption of nitroaromatic compounds in the winter of Beijing. Atmospheric Environment, 2020, 237, 117712.	4.1	28
196	14C-Based source assessment of carbonaceous aerosols at a rural site. Atmospheric Environment, 2012, 50, 36-40.	4.1	27
197	Chemical characteristics of size-resolved aerosols in winter in Beijing. Journal of Environmental Sciences, 2014, 26, 1641-1650.	6.1	27
198	Insights into a dust event transported through Beijing in spring 2012: Morphology, chemical composition and impact on surface aerosols. Science of the Total Environment, 2016, 565, 287-298.	8.0	27

#	Article	IF	CITATIONS
199	Wintertime N2O5 uptake coefficients over the North China Plain. Science Bulletin, 2020, 65, 765-774.	9.0	27
200	Characteristics of Aerosol Optical Properties and Their Chemical Apportionments during CAREBeijing 2006. Aerosol and Air Quality Research, 2014, 14, 1431-1442.	2.1	27
201	Source apportionment of PM 2.5 light extinction in an urban atmosphere in China. Journal of Environmental Sciences, 2018, 63, 277-284.	6.1	26
202	Size-resolved effective density of submicron particles during summertime in the rural atmosphere of Beijing, China. Journal of Environmental Sciences, 2018, 73, 69-77.	6.1	26
203	The state of science on severe air pollution episodes: Quantitative and qualitative analysis. Environment International, 2021, 156, 106732.	10.0	26
204	Modeling particulate nitrate in China: Current findings and future directions. Environment International, 2022, 166, 107369.	10.0	26
205	Characteristics and aging of traffic-derived particles in a highway tunnel at a coastal city in southern China. Science of the Total Environment, 2018, 619-620, 1385-1393.	8.0	25
206	DIURNAL VARIATIONS OF AEROSOL CHEMICAL COMPOSITIONS AND RELATED GASEOUS POLLUTANTS IN BEIJING AND GUANGZHOU. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 2002, 37, 479-488.	1.7	24
207	New particle formation in the presence of a strong biomass burning episode at a downwind rural site in PRD, China. Tellus, Series B: Chemical and Physical Meteorology, 2022, 65, 19965.	1.6	24
208	Chemical and physical properties of biomass burning aerosols and their CCN activity: A case study in Beijing, China. Science of the Total Environment, 2017, 579, 1260-1268.	8.0	24
209	Sizing of Ambient Particles From a Singleâ€Particle Soot Photometer Measurement to Retrieve Mixing State of Black Carbon at a Regional Site of the North China Plain. Journal of Geophysical Research D: Atmospheres, 2018, 123, 12,778.	3.3	24
210	Uptake of Waterâ€soluble Gasâ€phase Oxidation Products Drives Organic Particulate Pollution in Beijing. Geophysical Research Letters, 2021, 48, e2020GL091351.	4.0	24
211	Sulfate Formation Apportionment during Winter Haze Events in North China. Environmental Science & Technology, 2022, 56, 7771-7778.	10.0	24
212	Wintertime aerosol properties in Beijing. Atmospheric Chemistry and Physics, 2019, 19, 14329-14338.	4.9	23
213	Associations between size-segregated particle number concentrations and respiratory mortality in Beijing, China. International Journal of Environmental Health Research, 2012, 22, 119-133.	2.7	22
214	Particle number size distribution and new particle formation under the influence of biomass burning at a high altitude background site at Mt.ÂYulong (3410 m), China. Atmospheric Chemistry and Physics, 2018, 18, 15687-15703.	4.9	22
215	Morphology and composition of particles emitted from a port fuel injection gasoline vehicle under real-world driving test cycles. Journal of Environmental Sciences, 2019, 76, 339-348.	6.1	22
216	More Significant Impacts From New Particle Formation on Haze Formation During COVIDâ€19 Lockdown. Geophysical Research Letters, 2021, 48, e2020GL091591.	4.0	22

#	Article	IF	CITATIONS
217	Transâ€Regional Transport of Haze Particles From the North China Plain to Yangtze River Delta During Winter. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2020JD033778.	3.3	22
218	Resveratrol via activation of LKB1-AMPK signaling suppresses oxidative stress to prevent endothelial dysfunction in diabetic mice. Clinical and Experimental Hypertension, 2016, 38, 381-387.	1.3	21
219	Measurement of aerosol optical properties and their potential source origin in urban Beijing from 2013-2017. Atmospheric Environment, 2019, 206, 293-302.	4.1	21
220	Critical Role of Simultaneous Reduction of Atmospheric Odd Oxygen for Winter Haze Mitigation. Environmental Science & Technology, 2021, 55, 11557-11567.	10.0	21
221	Insights into aqueous-phase and photochemical formation of secondary organic aerosol in the winter of Beijing. Atmospheric Environment, 2021, 259, 118535.	4.1	21
222	Seawater, atmospheric dimethylsulfide and aerosol ions in the Pearl River Estuary and the adjacent northern South China Sea. Journal of Sea Research, 2005, 53, 131-145.	1.6	20
223	Retrieval of microphysical properties of aerosol particles from one-wavelength Raman lidar and multiwavelength Sun photometer observations. Atmospheric Environment, 2008, 42, 6398-6404.	4.1	20
224	Spatial and temporal variations in NO2 distributions over Beijing, China measured by imaging differential optical absorption spectroscopy. Journal of Environmental Management, 2009, 90, 1814-1823.	7.8	20
225	The identification of source regions of black carbon at a receptor site off the eastern coast of China. Atmospheric Environment, 2015, 100, 78-84.	4.1	20
226	Thermodynamic properties of nanoparticles during new particle formation events in the atmosphere of North China Plain. Atmospheric Research, 2017, 188, 55-63.	4.1	20
227	Using low-cost sensor technologies and advanced computational methods to improve dose estimations in health panel studies: results of the AIRLESS project. Journal of Exposure Science and Environmental Epidemiology, 2020, 30, 981-989.	3.9	20
228	Seasonal Source Apportionment of PM2.5 in Ningbo, a Coastal City in Southeast China. Aerosol and Air Quality Research, 2018, 18, 2741-2752.	2.1	20
229	Chemical composition and light absorption of carbonaceous aerosols emitted from crop residue burning: influence of combustion efficiency. Atmospheric Chemistry and Physics, 2020, 20, 13721-13734.	4.9	20
230	Reasearch on the Formation Mechanisms of New Particles in the Atmosphere. Acta Chimica Sinica, 2013, 71, 519.	1.4	20
231	Urinary polycyclic aromatic hydrocarbon metabolites as biomarkers of exposure to traffic-emitted pollutants. Environment International, 2015, 85, 104-110.	10.0	19
232	Effects of continental anthropogenic sources on organic aerosols in the coastal atmosphere of East China. Environmental Pollution, 2017, 229, 350-361.	7.5	19
233	Using low-cost sensors to monitor indoor, outdoor, and personal ozone concentrations in Beijing, China. Environmental Sciences: Processes and Impacts, 2020, 22, 131-143.	3.5	19
234	High time resolution observation and statistical analysis of atmospheric light extinction properties and the chemical speciation of fine particulates. Science China Chemistry, 2010, 53, 1801-1808.	8.2	18

#	Article	IF	CITATIONS
235	Evolution of secondary inorganic and organic aerosols during transport: A case study at a regional receptor site. Environmental Pollution, 2016, 218, 794-803.	7.5	18
236	The variability in the relationship between black carbon and carbon monoxide over the eastern coast of China: BC aging during transport. Atmospheric Chemistry and Physics, 2017, 17, 10395-10403.	4.9	18
237	Characteristics of biological particulate matters at urban and rural sites in the North China Plain. Environmental Pollution, 2019, 253, 569-577.	7.5	18
238	Impacts of methanesulfonate on the cloud condensation nucleation activity of sea salt aerosol. Atmospheric Environment, 2019, 201, 13-17.	4.1	18
239	Morphology and size of the particles emitted from a gasoline-direct-injection-engine vehicle and their ageing in an environmental chamber. Atmospheric Chemistry and Physics, 2020, 20, 2781-2794.	4.9	18
240	Multi-model evaluation of short-lived pollutant distributions over east Asia during summer 2008. Atmospheric Chemistry and Physics, 2016, 16, 10765-10792.	4.9	17
241	Long-term variability of inorganic ions in TSP at a remote background site in Japan (Wajima) from 2005 to 2015. Chemosphere, 2021, 264, 128427.	8.2	17
242	Elucidating the importance of semi-volatile organic compounds to secondary organic aerosol formation at a regional site during the EXPLORE-YRD campaign. Atmospheric Environment, 2021, 246, 118043.	4.1	17
243	Characterizing nitrate radical budget trends in Beijing during 2013–2019. Science of the Total Environment, 2021, 795, 148869.	8.0	17
244	Importance of Semivolatile/Intermediate-Volatility Organic Compounds to Secondary Organic Aerosol Formation from Chinese Domestic Cooking Emissions. Environmental Science and Technology Letters, 2022, 9, 507-512.	8.7	17
245	Measurement of gaseous and particulate formaldehyde in the Yangtze River Delta, China. Atmospheric Environment, 2020, 224, 117114.	4.1	16
246	Impacts of water partitioning and polarity of organic compounds on secondary organic aerosol over eastern China. Atmospheric Chemistry and Physics, 2020, 20, 7291-7306.	4.9	16
247	Links between the optical properties and chemical compositions of brown carbon chromophores in different environments: Contributions and formation of functionalized aromatic compounds. Science of the Total Environment, 2021, 786, 147418.	8.0	16
248	Mass spectral characterization of secondary organic aerosol from urban cooking and vehicular sources. Atmospheric Chemistry and Physics, 2021, 21, 15065-15079.	4.9	16
249	Liquid-liquid phase separation reduces radiative absorption by aged black carbon aerosols. Communications Earth & Environment, 2022, 3, .	6.8	16
250	Analysis on concentration and source rate of precursor vapors participating in particle formation and growth at xinken in the Pearl River Delta of China. Advances in Atmospheric Sciences, 2008, 25, 427-436.	4.3	15
251	Influence of biomass burning on mixing state of sub-micron aerosol particles in the North China Plain. Atmospheric Environment, 2017, 164, 259-269.	4.1	15
252	Characterization of particle number size distribution and new particle formation in Southern China. Journal of Environmental Sciences, 2017, 51, 342-351.	6.1	15

Міл Ни

#	Article	IF	CITATIONS
253	Mitigation of severe urban haze pollution by a precision air pollution control approach. Scientific Reports, 2018, 8, 8151.	3.3	15
254	Different metrics (number, surface area, and volume concentration) of urban particles with varying sizes in relation to fractional exhaled nitric oxide (FeNO). Journal of Thoracic Disease, 2019, 11, 1714-1726.	1.4	15
255	Assessment of PM2.5-bound nitrogen-containing organic compounds (NOCs) during winter at urban sites in China and Korea. Environmental Pollution, 2020, 265, 114870.	7.5	15
256	Characterization and Influence Factors of PM _{2.5} Emitted from Crop Straw Burning. Acta Chimica Sinica, 2016, 74, 356.	1.4	15
257	Tropospheric aerosol hygroscopicity in China. Atmospheric Chemistry and Physics, 2020, 20, 13877-13903.	4.9	14
258	Comparison of Secondary Organic Aerosol Estimation Methods. Acta Chimica Sinica, 2014, 72, 658.	1.4	14
259	The effects of accumulated refractory particles and the peak inert mode temperature on semi-continuous organic carbon and elemental carbon measurements during the CAREBeijing 2006 campaign. Atmospheric Environment, 2011, 45, 7192-7200.	4.1	13
260	Reply to Li et al.: Insufficient evidence for the contribution of regional transport to severe haze formation in Beijing. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E2741-E2741.	7.1	13
261	A novel approach for apportionment between primary and secondary sources of airborne nitrated polycyclic aromatic hydrocarbons (NPAHs). Atmospheric Environment, 2016, 138, 108-113.	4.1	13
262	Estimation of the PM2.5 effective hygroscopic parameter and water content based on particle chemical composition: Methodology and case study. Science China Earth Sciences, 2016, 59, 1683-1691.	5.2	13
263	Explaining the spatiotemporal variation of fine particle number concentrations over Beijing and surrounding areas in an air quality model with aerosol microphysics. Environmental Pollution, 2017, 231, 1302-1313.	7.5	13
264	Impacts of chlorine chemistry and anthropogenic emissions on secondary pollutants in the Yangtze river delta region. Environmental Pollution, 2021, 287, 117624.	7.5	13
265	Nocturnal aerosol particle formation in the North China Plain. Lithuanian Journal of Physics, 2015, 55,	0.4	13
266	Spatial–temporal distribution of dimethylsulfide in the subtropical Pearl River Estuary and adjacent waters. Continental Shelf Research, 2005, 25, 1996-2007.	1.8	12
267	Size and elemental composition of dry-deposited particles during a severe dust storm at a coastal site of Eastern China. Journal of Environmental Sciences, 2016, 40, 161-168.	6.1	12
268	Key role of atmospheric water content in the formation of regional haze in southern China. Atmospheric Environment, 2019, 216, 116918.	4.1	12
269	Variations in physicochemical properties of airborne particles during a heavy haze-to-dust episode in Beijing. Science of the Total Environment, 2021, 762, 143081.	8.0	12
270	Effects of biomass burning and photochemical oxidation on the black carbon mixing state and light absorption in summer season. Atmospheric Environment, 2021, 248, 118230.	4.1	12

Міл Ни

#	Article	IF	CITATIONS
271	Size-resolved atmospheric ice-nucleating particles during East Asian dust events. Atmospheric Chemistry and Physics, 2021, 21, 3491-3506.	4.9	12
272	Method to quantify black carbon aerosol light absorption enhancement with a mixing state index. Atmospheric Chemistry and Physics, 2021, 21, 18055-18063.	4.9	12
273	A closure study of aerosol hygroscopic growth factor during the 2006 Pearl River Delta Campaign. Advances in Atmospheric Sciences, 2010, 27, 947-956.	4.3	11
274	Resveratrol attenuates lipopolysaccharide-induced dysfunction of blood-brain barrier in endothelial cells via AMPK activation. Korean Journal of Physiology and Pharmacology, 2016, 20, 325.	1.2	11
275	A comprehensive observation-based multiphase chemical model analysis of sulfur dioxide oxidations in both summer and winter. Atmospheric Chemistry and Physics, 2021, 21, 13713-13727.	4.9	11
276	Estimation of secondary PM _{2.5} in China and the United States using a multi-tracer approach. Atmospheric Chemistry and Physics, 2022, 22, 5495-5514.	4.9	11
277	Anthropogenic Calcium Particles Observed in Beijing and Qingdao, China. Water, Air and Soil Pollution, 2005, 5, 261-276.	0.8	10
278	Observations of glyoxal and methylglyoxal in a suburban area of the Yangtze River Delta, China. Atmospheric Environment, 2020, 238, 117727.	4.1	10
279	The particle phase state during the biomass burning events. Science of the Total Environment, 2021, 792, 148035.	8.0	10
280	Distributions of dimethylsulfide in the Bohai sea and Yellow Sea of China. Journal of Environmental Sciences, 2003, 15, 762-7.	6.1	10
281	Variations in source contributions of particle number concentration under long-term emission control in winter of urban Beijing. Environmental Pollution, 2022, 304, 119072.	7.5	10
282	Observation-Based Estimations of Relative Ozone Impacts by Using Volatile Organic Compounds Reactivities. Environmental Science and Technology Letters, 2022, 9, 10-15.	8.7	10
283	Comment on "Atmospheric Particulate Matter Pollution during the 2008 Beijing Olympics― Environmental Science & Technology, 2009, 43, 7588-7588.	10.0	9
284	Changes of plasma vWF level in response to the improvement of air quality: an observation of 114 healthy young adults. Annals of Hematology, 2013, 92, 543-548.	1.8	9
285	Measurement report: Strong light absorption induced by aged biomass burning black carbon over the southeastern Tibetan Plateau in pre-monsoon season. Atmospheric Chemistry and Physics, 2021, 21, 8499-8510.	4.9	9
286	Impact of aerosol–radiation interaction on new particle formation. Atmospheric Chemistry and Physics, 2021, 21, 9995-10004.	4.9	9
287	Organic lodine Compounds in Fine Particulate Matter from a Continental Urban Region: Insights into Secondary Formation in the Atmosphere. Environmental Science & amp; Technology, 2021, 55, 1508-1514.	10.0	9
288	Impact of aging process on atmospheric black carbon aerosol properties and climate effects. Chinese Science Bulletin, 2020, 65, 4235-4250.	0.7	9

#	Article	IF	CITATIONS
289	Mechanism of New Particle Formation and Growth as well as Environmental Effects under Complex Air Pollution in China. Acta Chimica Sinica, 2016, 74, 385.	1.4	9
290	Formation and evolution of secondary organic aerosols derived from urban-lifestyle sources: vehicle exhaust and cooking emissions. Atmospheric Chemistry and Physics, 2021, 21, 15221-15237.	4.9	9
291	Measurements of particle number size distributions and optical properties in urban Shanghai during 2010 World Expo: relation to air mass history. Tellus, Series B: Chemical and Physical Meteorology, 2014, 66, 22319.	1.6	8
292	Secondary Formation of Aerosols Under Typical Highâ€Humidity Conditions in Wintertime Sichuan Basin, China: A Contrast to the North China Plain. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2021JD034560.	3.3	8
293	An Observational Based Modeling of the Surface Layer Particulate Nitrate in the North China Plain During Summertime. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2021JD035623.	3.3	8
294	Emergency Response Measures to Alleviate a Severe Haze Pollution Event in Northern China during December 2015: Assessment of Effectiveness. Aerosol and Air Quality Research, 2020, 20, 2098-2116.	2.1	8
295	Particle hygroscopicity inhomogeneity and its impact on reactive uptake. Science of the Total Environment, 2022, 811, 151364.	8.0	8
296	A Four Carbon Organonitrate as a Significant Product of Secondary Isoprene Chemistry. Geophysical Research Letters, 2022, 49, .	4.0	8
297	Uplifting of Asian Continental Pollution Plumes from the Boundary Layer to the Free Atmosphere over the Northwestern Pacific Rim in Spring. Scientific Online Letters on the Atmosphere, 2013, 9, 40-44.	1.4	7
298	Aircraft measurements of SO2, NOx, CO, and O3 over the coastal and offshore area of Yellow Sea of China. Environmental Monitoring and Assessment, 2016, 188, 527.	2.7	7
299	Variation of ambient carbonyl levels in urban Beijing between 2005 and 2012. Atmospheric Environment, 2016, 129, 105-113.	4.1	7
300	Potential of secondary aerosol formation from Chinese gasoline engine exhaust. Journal of Environmental Sciences, 2018, 66, 348-357.	6.1	7
301	Exploring the Drivers and Photochemical Impact of the Positive Correlation between Single Scattering Albedo and Aerosol Optical Depth in the Troposphere. Environmental Science and Technology Letters, 2021, 8, 504-510.	8.7	7
302	Larger than expected variation range in the real part of the refractive index for ambient aerosols in China. Science of the Total Environment, 2021, 779, 146443.	8.0	7
303	Research on Secondary Organic Aerosols Basing on Field Measurement. Acta Chimica Sinica, 2014, 72, 145.	1.4	7
304	Development of science and policy related to acid deposition in East Asia over 30Âyears. Ambio, 2022, 51, 1800-1818.	5.5	7
305	FLUOROMETRIC DETERMINATION OF PEROXIDES IN AN HPLC SYSTEM. Analytical Letters, 2001, 34, 1247-1254.	1.8	6
306	Simultaneous Measurements of Chemical Compositions of Fine Particles during Winter Haze Period in Urban Sites in China and Korea. Atmosphere, 2020, 11, 292.	2.3	6

#	Article	IF	CITATIONS
307	Formation mechanism of secondary organic aerosol in aerosol liquid water: A review. Chinese Science Bulletin, 2020, 65, 3118-3133.	0.7	6
308	Airborne particle number concentrations in China: A critical review. Environmental Pollution, 2022, 307, 119470.	7.5	6
309	Current Challenges in Visibility Improvement in Sichuan Basin. Geophysical Research Letters, 2022, 49, .	4.0	6
310	Ambient photolysis frequency of NO2 determined using chemical actinometer and spectroradiometer at an urban site in Beijing. Frontiers of Environmental Science and Engineering, 2016, 10, 1.	6.0	5
311	Comprehensive characterization of hygroscopic properties of methanesulfonates. Atmospheric Environment, 2020, 224, 117349.	4.1	5
312	Vertical profile of particle hygroscopicity and CCN effectiveness during winter in Beijing: insight into the hygroscopicity transition threshold of black carbon. Faraday Discussions, 2021, 226, 239-254.	3.2	5
313	New particle formation and its CCN enhancement in the Yangtze River Delta under the control of continental and marine air masses. Atmospheric Environment, 2021, 254, 118400.	4.1	5
314	Personal exposure to electrophilic compounds of fine particulate matter and the inflammatory response: The role of atmospheric transformation. Journal of Hazardous Materials, 2022, 432, 128559.	12.4	5
315	Formation, radiative forcing, and climatic effects of severe regional haze. Atmospheric Chemistry and Physics, 2022, 22, 4951-4967.	4.9	5
316	Identification of secondary organic aerosols based on aerosol mass spectrometry. Science China Chemistry, 2010, 53, 2593-2599.	8.2	4
317	Reply to Boucher et al.: Rate and timescale of black carbon aging regulate direct radiative forcing. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E5094-5.	7.1	4
318	A novel algorithm to determine the scattering coefficient of ambient organic aerosols. Environmental Pollution, 2021, 270, 116209.	7.5	4
319	Source apportionment of carbonaceous aerosols in diverse atmospheric environments of China by dual-carbon isotope method. Science of the Total Environment, 2022, 806, 150654.	8.0	4
320	Air Pollution Characteristics Before, During, and After the Beijing Olympics. Epidemiology, 2009, 20, S250.	2.7	4
321	The temporal and spatial distribution of the correlation between PM _{2.5} and O ₃ contractions in the urban atmosphere of China. Chinese Science Bulletin, 2022, 67, 2008-2017.	0.7	4
322	Ice-nucleating particles from multiple aerosol sources in the urban environment of Beijing under mixed-phase cloud conditions. Atmospheric Chemistry and Physics, 2022, 22, 7539-7556.	4.9	4
323	Characteristics of mass distributions of aerosol particle and its inorganic water-soluble ions in summer over a suburb farmland in Beijing. Frontiers of Environmental Science and Engineering in China, 2007, 1, 159-165.	0.8	3
324	Reply to Cao and Zhang: Tightening nonfossil emissions alone is inefficient for PM2.5 mitigation in China. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E1403-E1403.	7.1	3

#	Article	IF	CITATIONS
325	Characteristics of dry deposited mineral particles associated with weather conditions in the adjacent sea areas of East China during a cruise in spring 2011. Particuology, 2016, 28, 86-92.	3.6	3
326	Photochemical Pollution Indicators in the Subtropics. Croatica Chemica Acta, 0, , 11-16.	0.4	3
327	Field observations and quantifications of atmospheric formaldehyde partitioning in gaseous and particulate phases. Science of the Total Environment, 2021, 808, 152122.	8.0	3
328	Humidity-Dependent Phase State of Gasoline Vehicle Emission-Related Aerosols. Environmental Science & Technology, 2021, 55, 832-841.	10.0	2
329	Historically understanding the spatial distributions of particle surface area concentrations over China estimated using a non-parametric machine learning method. Science of the Total Environment, 2022, 824, 153849.	8.0	2
330	Formation of organic peroxides in the photooxidation of CH4. Science in China Series B: Chemistry, 1998, 41, 488-493.	0.8	1
331	Organic peroxide production in the Cl2-ethane-air photoreaction system. Science in China Series B: Chemistry, 2001, 44, 74-79.	0.8	1
332	Particulate matter pollution research in the Yangtze River Delta: Observations, processes, modeling and health effects. Atmospheric Environment, 2015, 123, 285-287.	4.1	1
333	Overview of Persistent Haze Events in China. , 2017, , 3-25.		1
334	Acute Effect of Black Carbon and Particle Pollution in the Air on Exhaled Nitric Oxide of Elementary School Children Before and During 2008 Beijing Olympic. Epidemiology, 2009, 20, S250.	2.7	1
335	The Beijing HEART Study: Study Hypotheses and Preliminary Results. Epidemiology, 2009, 20, S257.	2.7	1
336	Chemical characteristics and sources of organic aerosols across the Taiwan Strait. Atmospheric Pollution Research, 2022, 13, 101312.	3.8	1
337	Parameterization of the ambient aerosol refractive index with source appointed chemical compositions. Science of the Total Environment, 2022, 842, 156573.	8.0	1
338	Chemical characteristics of fine particles during spring dust storm dominant period in two Chinese cities, Baotou and Wuwei. Diqiu Huaxue, 2006, 25, 221-221.	0.5	0
339	Spatial Distributions, Chemical Properties, and Sources of Ambient Particulate Matters in China. , 2017, , 265-284.		0
340	Iceâ€Nucleating Particle Concentrations and Sources in Rainwater Over the Third Pole, Tibetan Plateau. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2020JD033864.	3.3	0