José Miguel Ferreras

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9487273/publications.pdf

Version: 2024-02-01

68 papers

1,812 citations

236833 25 h-index 289141 40 g-index

68 all docs 68
docs citations

68 times ranked 824 citing authors

#	Article	IF	CITATIONS
1	Description, Distribution, Activity and Phylogenetic Relationship of Ribosome-Inactivating Proteins in Plants, Fungi and Bacteria. Mini-Reviews in Medicinal Chemistry, 2004, 4, 461-476.	1.1	182
2	Distribution and properties of major ribosome-inactivating proteins (28 S rRNA N-glycosidases) of the plant Saponaria officinalis L. (Caryophyllaceae). Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 1993, 1216, 31-42.	2.4	102
3	2.8-Ã crystal structure of a nontoxic type-ll ribosome-inactivating protein, ebulin l. Proteins: Structure, Function and Bioinformatics, 2001, 43, 319-326.	1.5	84
4	Isolation and partial characterization of nigrin b, a non-toxic novel type 2 ribosome-inactivating protein from the bark of Sambucus nigra L Plant Molecular Biology, 1993, 22, 1181-1186.	2.0	78
5	Sequence comparison and phylogenetic analysis by the Maximum Likelihood method of ribosome-inactivating proteins from angiosperms. Plant Molecular Biology, 2014, 85, 575-588.	2.0	76
6	RIP for viruses. Nature, 1996, 379, 777-778.	13.7	72
7	Molecular characterization and systemic induction of single-chain ribosome-inactivating proteins (RIPs) in sugar beet (Beta vulgaris) leaves. Journal of Experimental Botany, 2005, 56, 1675-1684.	2.4	72
8	Toxicity and cytotoxicity of nigrin b, a two-chain ribosome-inactivating protein from Sambucus nigra  : comparison with ricin. Archives of Toxicology, 1997, 71, 360-364.	1.9	65
9	Use of Ribosome-Inactivating Proteins from Sambucus for the Construction of Immunotoxins and Conjugates for Cancer Therapy. Toxins, 2011, 3, 420-441.	1.5	59
10	Targeting cancer cells with transferrin conjugates containing the non-toxic type 2 ribosome-inactivating proteins nigrin b or ebulin l. Cancer Letters, 2002, 184, 29-35.	3.2	51
11	Biological activities of the antiviral protein BE27 from sugar beet (Beta vulgaris L.). Planta, 2015, 241, 421-433.	1.6	38
12	Biological and antipathogenic activities of ribosome-inactivating proteins from Phytolacca dioica L Biochimica Et Biophysica Acta - General Subjects, 2016, 1860, 1256-1264.	1.1	38
13	Antiviral Activity of Ribosome-Inactivating Proteins. Toxins, 2021, 13, 80.	1.5	36
14	Molecular mechanism of inhibition of mammalian protein synthesis by some four-chain agglutinins. FEBS Letters, 1993, 329, 59-62.	1.3	35
15	Presence of polymerized and free forms of the non-toxic type 2 ribosome-inactivating protein ebulin and a structurally related new homodimeric lectin in fruits of Sambucus ebulus L Planta, 1998, 204, 310-317.	1.6	35
16	Sensitivity of cancer cell lines to the novel non-toxic type 2 ribosome-inactivating protein nigrin b. Cancer Letters, 2001, 167, 163-169.	3.2	35
17	Targeting a marker of the tumour neovasculature using a novel anti-human CD105-immunotoxin containing the non-toxic type 2 ribosome-inactivating protein nigrin b. Cancer Letters, 2007, 256, 73-80.	3.2	34
18	Ebulitins: A new family of type 1 ribosome-inactivating proteins (rRNAN-glycosidases) from leaves of Sambucus ebulus L. that coexist with the type 2 ribosome-inactivating protein ebulin 1. FEBS Letters, 1995, 360, 299-302.	1.3	33

#	Article	IF	Citations
19	Effects of ribosome-inactivating proteins on Escherichia coli and Agrobacterium tumefaciens translation systems. Journal of Bacteriology, 1993, 175, 6721-6724.	1.0	32
20	Elderberry (Sambucus nigral.) seed proteins inhibit protein synthesis and display strong immunoreactivity with rabbit polyclonal antibodies raised against the type 2 ribosome-inactivating protein nigrin b. Journal of Experimental Botany, 1994, 45, 513-516.	2.4	32
21	Ageritin, a Ribotoxin from Poplar Mushroom (<i>Agrocybe aegerita</i>) with Defensive and Antiproliferative Activities. ACS Chemical Biology, 2019, 14, 1319-1327.	1.6	30
22	Isolation and characterization of a new non-toxic two-chain ribosome-inactivating protein from fruits of elder (Sambucus nigraL.). Journal of Experimental Botany, 1996, 47, 1577-1585.	2.4	29
23	Cytotoxicity of an Ebulin l-Anti-Human CD105 Immunotoxin on Mouse Fibroblasts (L929) and Rat Myoblasts (L6E9) Cells Expressing Human CD105. Medicinal Chemistry, 2005, 1, 65-71.	0.7	29
24	Antifungal activity of the ribosomeâ€inactivating protein <scp>BE</scp> 27 from sugar beet (<i><scp>B</scp>eta vulgaris</i> â€ <scp>L</scp> .) against the green mould <i><scp>P</scp>enicillium digitatum</i> . Molecular Plant Pathology, 2016, 17, 261-271.	2.0	28
25	A non-toxic two-chain ribosome-inactivating protein co-exists with a structure-related monomeric lectin (SNA III) in elder (Sambucus nigra) fruits. Biochemical Journal, 1996, 315, 343-344.	1.7	27
26	Constitutive and inducible type 1 ribosome-inactivating proteins (RIPs) in elderberry (Sambucus) Tj ETQq 0 0 0 rg	gBT ₁ ,9verlo	ock 10 Tf 50 4
27	Specific dose-dependent damage of Lieberkühn crypts promoted by large doses of type 2 ribosome-inactivating protein nigrin b intravenous injection to mice. Toxicology and Applied Pharmacology, 2005, 207, 138-146.	1.3	25
28	Elicitor-dependent expression of the ribosome-inactivating protein beetin is developmentally regulated*. Journal of Experimental Botany, 2008, 59, 1215-1223.	2.4	25
29	In vitro and in vivo effects of an anti-mouse endoglin (CD105)–immunotoxin on the early stages of mouse B16MEL4A5 melanoma tumours. Cancer Immunology, Immunotherapy, 2013, 62, 541-551.	2.0	25
30	Fusidic acid-dependent ribosomal complexes protect Escherichia coli ribosomes from the action of the type 1 ribosome-inactivating protein crotin 2. FEBS Letters, 1993, 318, 189-192.	1.3	22
31	Molecular action of the type 1 ribosome-inactivating protein saporin 5 onVicia sativaribosomes. FEBS Letters, 1993, 325, 291-294.	1.3	22
32	Plant Species Containing Inhibitors of Eukaryotic Polypeptide Synthesis. Journal of Experimental Botany, 1990, 41, 67-70.	2.4	21
33	Sialic acid-binding dwarf elder four-chain lectin displays nucleic acid N-glycosidase activity. Biochimie, 2010, 92, 71-80.	1.3	20
34	Effect of the chronic ethanol action on the activity of the general amino-acid permease from Saccharomyces cerevisiae var. ellipsoideus. Biochimica Et Biophysica Acta - Biomembranes, 1989, 979, 375-377.	1.4	19
35	Isolation and partial characterization of a novel and uncommon two-chain 64-kDa ribosome-inactivating protein from the bark of elder (Sambucus nigraL.). FEBS Letters, 1997, 413, 85-91.	1.3	19
36	cDNA molecular cloning and seasonal acumulation of an ebulin l-related dimeric lectin of dwarf elder (Sambucus ebulus L.) leaves. International Journal of Biochemistry and Cell Biology, 2003, 35, 1061-1065.	1.2	18

#	Article	IF	Citations
37	Preparation and Optimization of a Cell-free Translation System from Vicia sativa Germ Lacking Ribosome-inactivating Protein Activity. Journal of Experimental Botany, 1992, 43, 729-737.	2.4	17
38	The ribotoxin-like protein Ostreatin from Pleurotus ostreatus fruiting bodies: Confirmation of a novel ribonuclease family expressed in basidiomycetes. International Journal of Biological Macromolecules, 2020, 161, 1329-1336.	3.6	16
39	Isolation and characterization of two new N-glycosidase type-1 ribosome-inactivating proteins, unrelated in amino-acid sequence, from Petrocoptis species. Planta, 1994, 194, 487-491.	1.6	14
40	Transient occurrence of an ebulin-related d-galactose-lectin in shoots of Sambucus ebulus L Phytochemistry, 2008, 69, 857-864.	1.4	14
41	Musarmins: three single-chain ribosome-inactivating protein isoforms from bulbs of Muscari armeniacum L. and Miller. International Journal of Biochemistry and Cell Biology, 2003, 35, 61-78.	1.2	13
42	Occurrence and new procedure of preparation of nigrin, an antiribosomal lectin present in elderberry bark. Food Research International, 2011, 44, 2798-2805.	2.9	13
43	Ribosomal RNA N-glycosylase Activity Assay of Ribosome-inactivating Proteins. Bio-protocol, 2017, 7, e2180.	0.2	13
44	Sambucus Ribosome-Inactivating Proteins and Lectins. Plant Cell Monographs, 2010, , 107-131.	0.4	11
45	Antifungal Activity of α-Sarcin against <i>Penicillium digitatum</i> : Proposal of a New Role for Fungal Ribotoxins. ACS Chemical Biology, 2018, 13, 1978-1982.	1.6	11
46	Adaptation of in vitro rat brain protein synthesis to long-term ingestion of n-butanol. Brain Research, 1990, 517, 330-332.	1.1	9
47	Insight into the phylogenetic relationship and structural features of vertebrate myoglobin family. International Journal of Biological Macromolecules, 2016, 93, 1041-1050.	3.6	9
48	Kirkiin: A New Toxic Type 2 Ribosome-Inactivating Protein from the Caudex of Adenia kirkii. Toxins, 2021, 13, 81.	1.5	9
49	Effect of continued exposition to ethanol on activity of the ammonium and fructose transport systems in Saccharomyces cerevisiaevar. ellipsoideus. Biotechnology and Bioengineering, 1991, 37, 389-391.	1.7	7
50	Vicia sativaL. â€~Run-off' and Purified Ribosomes: Polyphenylalanine Synthesis and Molecular Action of Ribosome-inactivating Proteins. Journal of Experimental Botany, 1993, 44, 1297-1304.	2.4	7
51	Transient Injury-Dependent Up-Regulation of CD105 and its Specific Targeting with an Anti-Vascular Anti-Mouse Endoglin-Nigrin b Immunotoxin. Medicinal Chemistry, 2012, 8, 996-1002.	0.7	7
52	Deciphering Molecular Determinants Underlying Penicillium digitatum's Response to Biological and Chemical Antifungal Agents by Tandem Mass Tag (TMT)-Based High-Resolution LC-MS/MS. International Journal of Molecular Sciences, 2022, 23, 680.	1.8	7
53	Ebulin-RP, a novel member of the Ebulin gene family with low cytotoxicity as a result of deficient sugar binding domains. Biochimica Et Biophysica Acta - General Subjects, 2018, 1862, 460-473.	1.1	6
54	Development of a cell-free translation system from Cucumis melo: preparation, optimization and evaluation of sensitivity to some translational inhibitors. Plant Science, 1993, 90, 127-134.	1.7	5

#	Article	IF	Citations
55	Sensitivity of Translation byBrevibacterium lactofermentumRibosomes to Type 1 and Type 2 Ribosome-inactivating Proteins. Bioscience, Biotechnology and Biochemistry, 1994, 58, 1458-1462.	0.6	5
56	Ribosome Inactivating Proteins from Plants: Biological Properties and their Use in Experimental Therapy. , 2013, , 127-143.		5
57	Primary Sequence and 3D Structure Prediction of the Plant Toxin Stenodactylin. Toxins, 2020, 12, 538.	1.5	5
58	Effect of acute ethanol administration and nutritional status on secretory protein synthesis in isolated rat liver cells. Toxicology in Vitro, 1989, 3, 7-12.	1.1	4
59	Changes in the activity of the general amino acid permease fromSaccharomyces cerevisiae var.ellipsoideus during fermentation. Biotechnology and Bioengineering, 1990, 36, 808-810.	1.7	4
60	Protein phosphorylation in a cell-free translation system from Vicia sativa. Phytochemistry, 1991, 30, 3185-3187.	1.4	4
61	Changes in sensitivity of in vitro rat brain protein synthesis to the acute action of ethanol and isopropanol as a consequence of the long-term ingestion of isopropanol. Archives of Toxicology, 1991, 65, 500-504.	1.9	4
62	Insight into the structural and functional features of myoglobin from Hystrix cristata L. and Rangifer tarandus L RSC Advances, 2015, 5, 26388-26401.	1.7	4
63	Isolation and Characterization of a new Dgalactose-Binding Lectin from Sambucus Racemosa L Protein and Peptide Letters, 2003, 10, 287-293.	0.4	4
64	Ebulin I is Internalized in Cells by Both Clathrin-Dependent and -Independent Mechanisms and Does Not Require Clathrin or Dynamin for Intoxication. Toxins, 2021, 13, 102.	1.5	3
65	A Cucumis sativus cell-free translation system: preparation, optimization and sensitivity to some antibiotics and ribosome-inactivating proteins. Physiologia Plantarum, 1993, 88, 549-556.	2.6	3
66	Sequence, Structure, and Binding Site Analysis of Kirkiin in Comparison with Ricin and Other Type 2 RIPs. Toxins, 2021, 13, 862.	1.5	3
67	Fusidic acid-dependent wheat germ ribosomal complexes require unphosphorylated elongation factor 2. Phytochemistry, 1992, 31, 55-57.	1.4	1
68	Killing cancer cells by targeting the EGF receptor. Cancer Biology and Therapy, 2008, 7, 243-244.	1.5	1