## Pilar Acedo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9486798/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                            | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Young GI angle: What being a myUEG young GI associate can offer you—Check it out!. United European<br>Gastroenterology Journal, 2022, 10, 134-135.                                 | 1.6 | 4         |
| 2  | The State-of-the-Art of Phase II/III Clinical Trials for Targeted Pancreatic Cancer Therapies. Journal of Clinical Medicine, 2021, 10, 566.                                        | 1.0 | 21        |
| 3  | Dual mitochondrial targeting as a therapeutic strategy to treat pancreatic ductal adenocarcinoma.<br>Pancreatology, 2021, 21, S71-S72.                                             | 0.5 | 0         |
| 4  | Biliary Strictures and Cholangiocarcinoma – Untangling a Diagnostic Conundrum. Frontiers in<br>Oncology, 2021, 11, 699401.                                                         | 1.3 | 9         |
| 5  | Smart Nanoparticles as Advanced Anti-Akt Kinase Delivery Systems for Pancreatic Cancer Therapy. ACS<br>Applied Materials & Interfaces, 2021, 13, 55790-55805.                      | 4.0 | 8         |
| 6  | Current and novel therapeutic opportunities for systemic therapy in biliary cancer. British Journal of Cancer, 2020, 123, 1047-1059.                                               | 2.9 | 37        |
| 7  | Young GI Societies in Europe: 2019 update. United European Gastroenterology Journal, 2020, 8, 227-232.                                                                             | 1.6 | 10        |
| 8  | How to start a Young GI Section in your country: A cookbook. United European Gastroenterology<br>Journal, 2020, 8, 355-358.                                                        | 1.6 | 5         |
| 9  | Alkynyl N-BODIPYs as Reactive Intermediates for the Development of Dyes for Biophotonics. Chemistry Proceedings, 2020, 3, .                                                        | 0.1 | Ο         |
| 10 | Young GI angle: A young point of view on translational medicine. United European Gastroenterology<br>Journal, 2019, 7, 864-865.                                                    | 1.6 | 1         |
| 11 | Targeting Pyruvate Kinase M2 and Lactate Dehydrogenase A Is an Effective Combination Strategy for the Treatment of Pancreatic Cancer. Cancers, 2019, 11, 1372.                     | 1.7 | 29        |
| 12 | Protoporphyrin IX is a dual inhibitor of p53/MDM2 and p53/MDM4 interactions and induces apoptosis in B-cell chronic lymphocytic leukemia cells. Cell Death Discovery, 2019, 5, 77. | 2.0 | 24        |
| 13 | UEG Young Talent Group: What do we do?. United European Gastroenterology Journal, 2019, 7, 166-168.                                                                                | 1.6 | 5         |
| 14 | Activation of TAp73 and inhibition of TrxR by Verteporfin for improved cancer therapy in <i>TP53</i> mutant pancreatic tumors. Future Science OA, 2019, 5, FSO366.                 | 0.9 | 16        |
| 15 | Multimodal use of the porphyrin TMPyP: From cancer therapy to antimicrobial applications. Journal of Porphyrins and Phthalocyanines, 2019, 23, 11-27.                              | 0.4 | 43        |
| 16 | Combination light-based therapies to treat pancreatic cancer: a proof of concept. , 2019, , .                                                                                      |     | 0         |
| 17 | Verteporfin Photodynamic therapy with 5 aza-deoxy-cytidine for neo-adjuvant treatment of primary breast cancer: Results of pre-clinical investigations. , 2019, , .                |     | 0         |
| 18 | Reactivation of TAp73 tumor suppressor by protoporphyrin IX, a metabolite of aminolevulinic acid, induces apoptosis in TP53-deficient cancer cells. Cell Division, 2018, 13, 10.   | 1.1 | 15        |

Pilar Acedo

| #  | Article                                                                                                                                                                                                                          | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Improved selectivity and cytotoxic effects of irinotecan via liposomal delivery: A comparative study on Hs68 and HeLa cells. European Journal of Pharmaceutical Sciences, 2017, 109, 65-77.                                      | 1.9 | 18        |
| 20 | Mutant p53 talks to proteasomes—is there a feedback loop between Nrf2 and mutant p53?.<br>Translational Cancer Research, 2016, 5, 733-737.                                                                                       | 0.4 | 0         |
| 21 | Silica-based nanostructured materials for biomedical applications. , 2015, , 429-448.                                                                                                                                            |     | 3         |
| 22 | p53 family members – important messengers in cell death signaling in photodynamic therapy of cancer?. Photochemical and Photobiological Sciences, 2015, 14, 1390-1396.                                                           | 1.6 | 26        |
| 23 | Poly( <i>D</i> , <i>L</i> -lactide-co-glycolide) nanoparticles as delivery agents for photodynamic<br>therapy: enhancing singlet oxygen release and photototoxicity by surface PEG coating.<br>Nanotechnology, 2015, 26, 365104. | 1.3 | 24        |
| 24 | JNK–NQO1 axis drives TAp73-mediated tumor suppression upon oxidative and proteasomal stress. Cell<br>Death and Disease, 2014, 5, e1484-e1484.                                                                                    | 2.7 | 33        |
| 25 | Two combined photosensitizers: a goal for more effective photodynamic therapy of cancer. Cell Death and Disease, 2014, 5, e1122-e1122.                                                                                           | 2.7 | 117       |
| 26 | Efficient and safe internalization of magnetic iron oxide nanoparticles: Two fundamental requirements for biomedical applications. Nanomedicine: Nanotechnology, Biology, and Medicine, 2014, 10, 733-743.                       | 1.7 | 101       |
| 27 | Efficient induction of apoptosis in HeLa cells by a novel cationic porphycene photosensitizer.<br>European Journal of Medicinal Chemistry, 2013, 63, 401-414.                                                                    | 2.6 | 23        |
| 28 | Tricationic porphycene derivative Py3MeO–TBPo mediated photodynamic effects on tumour HeLa cells.<br>Photodiagnosis and Photodynamic Therapy, 2011, 8, 187.                                                                      | 1.3 | 0         |
| 29 | Cell death causes relocalization of photosensitizing fluorescent probes. Acta Histochemica, 2011, 113, 363-368.                                                                                                                  | 0.9 | 24        |
| 30 | Dimercaptosuccinic acid-coated magnetite nanoparticles for magnetically guided in vivo delivery of interferon gamma for cancer immunotherapy. Biomaterials, 2011, 32, 2938-2952.                                                 | 5.7 | 170       |
| 31 | A new protocol in photodynamic therapy: enhanced tumour cell death by combining two different photosensitizers. Photochemical and Photobiological Sciences, 2010, 9, 295-297.                                                    | 1.6 | 33        |
| 32 | Mitotic catastrophe induced in HeLa cells by photodynamic treatment with Zn(II)-phthalocyanine.<br>International Journal of Oncology, 1992, 32, 1189-1196.                                                                       | 1.4 | 35        |