David A Sivak

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9486722/publications.pdf Version: 2024-02-01

#	Article	lF	CITATIONS
1	Performance scaling and trade-offs for collective motor-driven transport. New Journal of Physics, 2022, 24, 013009.	1.2	10
2	Stochastic microbiome assembly depends on context. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	36
3	Internal energy and information flows mediate input and output power in bipartite molecular machines. Physical Review E, 2022, 105, 024136.	0.8	7
4	Information Thermodynamics of the Transition-Path Ensemble. Physical Review Letters, 2022, 128, 170602.	2.9	3
5	Efficient two-dimensional control of barrier crossing. Europhysics Letters, 2022, 139, 17001.	0.7	7
6	Hidden energy flows in strongly coupled nonequilibrium systems. Europhysics Letters, 2021, 133, 10003.	0.7	3
7	Free-energy transduction within autonomous systems. Physical Review E, 2021, 103, 022140.	0.8	8
8	Maximizing power and velocity of an information engine. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	34
9	Steps minimize dissipation in rapidly driven stochastic systems. Physical Review E, 2021, 104, L022101.	0.8	16
10	Heat fluctuations in a harmonic chain of active particles. Physical Review E, 2021, 104, 024605.	0.8	12
11	Maximal fluctuation exploitation in Gaussian information engines. Physical Review E, 2021, 104, 044122.	0.8	10
12	Theory of Nonequilibrium Free Energy Transduction by Molecular Machines. Chemical Reviews, 2020, 120, 434-459.	23.0	90
13	Nonequilibrium Energy Transduction in Stochastic Strongly Coupled Rotary Motors. Journal of Physical Chemistry Letters, 2020, 11, 5273-5278.	2.1	13
14	Modeling work-speed-accuracy trade-offs in a stochastic rotary machine. Physical Review E, 2020, 101, 032110.	0.8	4
15	Optimal control of protein copy number. Physical Review E, 2020, 101, 022118.	0.8	5
16	Skewed thermodynamic geometry and optimal free energy estimation. Journal of Chemical Physics, 2020, 153, 244119.	1.2	20
17	Apparent superballistic dynamics in one-dimensional random walks with biased detachment. Physical Review Research, 2020, 2, .	1.3	10
18	Pulling cargo increases the precision of molecular motor progress. Europhysics Letters, 2019, 126, 40004.	0.7	9

DAVID A SIVAK

#	Article	IF	CITATIONS
19	Optimal discrete control: minimizing dissipation in discretely driven nonequilibrium systems. Journal of Statistical Mechanics: Theory and Experiment, 2019, 2019, 083212.	0.9	20
20	Breaking time-reversal symmetry for ratchet models of molecular machines. Physical Review E, 2019, 99, 062127.	0.8	2
21	Using Equilibrium Behavior to Reduce Energy Dissipation in Non-Equilibrium Biomolecular Processes. Biophysical Journal, 2019, 116, 325a.	0.2	1
22	Using a system's equilibrium behavior to reduce its energy dissipation in nonequilibrium processes. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 5920-5924.	3.3	35
23	Optimal control of rotary motors. Physical Review E, 2019, 99, 012119.	0.8	19
24	Allocating and Splitting Free Energy to Maximize Molecular Machine Flux. Journal of Physical Chemistry B, 2018, 122, 1387-1393.	1.2	14
25	Energy Dissipation and Information Flow in Coupled Markovian Systems. Entropy, 2018, 20, 707.	1.1	3
26	Quantifying Configuration-Sampling Error in Langevin Simulations of Complex Molecular Systems. Entropy, 2018, 20, 318.	1.1	29
27	Stochastic control in microscopic nonequilibrium systems. Europhysics Letters, 2018, 124, 20001.	0.7	19
28	Allocating dissipation across a molecular machine cycle to maximize flux. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 11057-11062.	3.3	35
29	Effective dissipation: Breaking time-reversal symmetry in driven microscopic energy transmission. Physical Review E, 2016, 94, 032137.	0.8	5
30	Thermodynamic geometry of minimum-dissipation driven barrier crossing. Physical Review E, 2016, 94, 052106.	0.8	42
31	Transcription Factor Competition Allows Embryonic Stem Cells to Distinguish Authentic Signals from Noise. Cell Systems, 2015, 1, 117-129.	2.9	73
32	Environmental Statistics and Optimal Regulation. PLoS Computational Biology, 2014, 10, e1003826.	1.5	20
33	Time Step Rescaling Recovers Continuous-Time Dynamical Properties for Discrete-Time Langevin Integration of Nonequilibrium Systems. Journal of Physical Chemistry B, 2014, 118, 6466-6474.	1.2	56
34	E pluribus unum, no more: from one crystal, many conformations. Current Opinion in Structural Biology, 2014, 28, 56-62.	2.6	53
35	Crystal Cryocooling Distorts Conformational Heterogeneity in a Model Michaelis Complex of DHFR. Structure, 2014, 22, 899-910.	1.6	131
36	Using Nonequilibrium Fluctuation Theorems to Understand and Correct Errors in Equilibrium and Nonequilibrium Simulations of Discrete Langevin Dynamics. Physical Review X, 2013, 3, .	2.8	43

ΔΑΥΙΟ Α SIVAK

#	Article	IF	CITATIONS
37	Optimal Control of Transitions between Nonequilibrium Steady States. PLoS ONE, 2013, 8, e82754.	1.1	26
38	Consequences of local inter-strand dehybridization for large-amplitude bending fluctuations of double-stranded DNA. Journal of Chemical Physics, 2012, 136, 045102.	1.2	15
39	Thermodynamic Metrics and Optimal Paths. Physical Review Letters, 2012, 108, 190602.	2.9	236
40	Geometry of thermodynamic control. Physical Review E, 2012, 86, 041148.	0.8	100
41	Thermodynamics of Prediction. Physical Review Letters, 2012, 109, 120604.	2.9	173
42	Near-Equilibrium Measurements of Nonequilibrium Free Energy. Physical Review Letters, 2012, 108, 150601.	2.9	46
43	Measures of trajectory ensemble disparity in nonequilibrium statistical dynamics. Journal of Statistical Mechanics: Theory and Experiment, 2011, 2011, P06003.	0.9	18
44	Probing the Conformational Distributions of Subpersistence Length DNA. Biophysical Journal, 2009, 97, 1408-1417.	0.2	75
45	Optical Measurement of Mechanical Forces Inside Short DNA Loops. Biophysical Journal, 2008, 94, 2179-2186.	0.2	25
46	Controlling DNA Capture and Propagation through Artificial Nanopores. Nano Letters, 2007, 7, 2824-2830.	4.5	132
47	Multidimensional minimum-work control of a 2D Ising model Journal of Chemical Physics 0	12	19