
Justin Chiu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/948626/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Experimental and numerical investigation of a latent heat thermal energy storage unit with ellipsoidal macro-encapsulation. Energy, 2022, 238, 121828.	8.8	19
2	Performance analysis of packed bed latent heat storage system for high-temperature thermal energy storage using pellets composed of micro-encapsulated phase change material. Energy, 2022, 238, 121746.	8.8	34
3	Polyvinylpyrrolidone (PVP)-enabled significant suppression of supercooling of erythritol for medium-temperature thermal energy storage. Journal of Energy Storage, 2022, 46, 103915.	8.1	7
4	Experimental analysis of submerged coil and encapsulated slab latent heat storage. Applied Thermal Engineering, 2022, 209, 118259.	6.0	1
5	Assessing sizing optimality of OFF-GRID AC-linked solar PV-PEM systems for hydrogen production. International Journal of Hydrogen Energy, 2022, 47, 27303-27325.	7.1	29
6	Latent heat storage integration into heat pump based heating systems for energy-efficient load shifting. Energy Conversion and Management, 2021, 236, 114042.	9.2	24
7	Numerical Investigation of Latent Thermal Storage in a Compact Heat Exchanger Using Mini-Channels. Applied Sciences (Switzerland), 2021, 11, 5985.	2.5	2
8	Performance evaluation of three latent heat storage designs for cogeneration applications. Solar Energy, 2021, 225, 444-462.	6.1	9
9	Experimental investigation of solidification and melting in a vertically finned cavity. Applied Thermal Engineering, 2021, 198, 117459.	6.0	22
10	Thermal Energy Storage Materials (TESMs)—What Does It Take to Make Them Fly?. Crystals, 2021, 11, 1276.	2.2	18
11	Heat transfer model for energy-active windows – An evaluation of efficient reuse of waste heat in buildings. Renewable Energy, 2020, 162, 2318-2329.	8.9	15
12	Development of Novel Microencapsulated Hybrid Latent/Chemical Heat Storage Material. ACS Sustainable Chemistry and Engineering, 2020, 8, 14700-14710.	6.7	8
13	Numerical thermal performance investigation of a latent heat storage prototype toward effective use in residential heating systems. Applied Energy, 2020, 278, 115631.	10.1	11
14	Experimental investigation of thermo-physical properties of n-octadecane and n-eicosane. International Journal of Heat and Mass Transfer, 2020, 161, 120285.	4.8	19
15	Hydroxyl group functionalized graphene oxide nanosheets as additive for improved erythritol latent heat storage performance: A comprehensive evaluation on the benefits and challenges. Solar Energy Materials and Solar Cells, 2020, 215, 110658.	6.2	20
16	Thermal behavior of a sodium acetate trihydrate-based PCM: T-history and full-scale tests. Applied Energy, 2020, 261, 114432.	10.1	21
17	Feasibility and economic analysis of solution transportation absorption system for long-distance thermal transportation under low ambient temperature. Energy Conversion and Management, 2019, 196, 793-806.	9.2	13
18	Thermal energy storage in combined cycle power plants: comparing finite volume to finite element methods. E3S Web of Conferences, 2019, 113, 01001.	0.5	0

Justin Chiu

#	Article	IF	CITATIONS
19	Thermal conductivity measurement of erythritol, xylitol, and their blends for phase change material design: A methodological study. International Journal of Energy Research, 2019, 43, 1785-1801.	4.5	14
20	Numerical investigation of melting in a cavity with vertically oriented fins. Applied Energy, 2019, 235, 1027-1040.	10.1	100
21	Experimental investigation on cylindrically macro-encapsulated latent heat storage for space heating applications. Energy Conversion and Management, 2019, 182, 166-177.	9.2	45
22	Techno-Economic Comparative Analysis of Innovative Combined Cycle Power Plant Layouts Integrated With Heat Pumps and Thermal Energy Storage. , 2019, , .		1
23	Thermal Energy Storage For Gas Turbine Power Augmentation. Journal of the Global Power and Propulsion Society, 2019, 3, 592-608.	0.8	9
24	State of the Art in Hydrogen Liquefaction. , 2019, , .		0
25	Thermodynamic assessment of binary erythritol-xylitol phase diagram for phase change materials design. Calphad: Computer Coupling of Phase Diagrams and Thermochemistry, 2018, 60, 29-36.	1.6	8
26	The experimental phase diagram study of the binary polyols system erythritol-xylitol. Solar Energy Materials and Solar Cells, 2018, 174, 248-262.	6.2	27
27	Techno economic analysis of thermochemical energy storage and transport system utilizing "Zeolite Boilerâ€ı case study in Sweden. Energy Procedia, 2018, 149, 102-111.	1.8	9
28	Phase equilibrium in the design of phase change materials for thermal energy storage: State-of-the-art. Renewable and Sustainable Energy Reviews, 2017, 73, 558-581.	16.4	79
29	INPATH $\hat{a} \in$ " TES: Innovative pathways to PhD research in thermal energy storage. , 2017, , .		0
30	Experimental phase diagram of the dodecane–tridecane system as phase change material in cold storage. International Journal of Refrigeration, 2017, 82, 130-140.	3.4	25
31	Assessing the techno-economic impact of low-temperature subnets in conventional district heating networks. Energy Procedia, 2017, 116, 260-272.	1.8	31
32	Erythritol, glycerol, their blends, and olive oil, as sustainable phase change materials. Energy Procedia, 2017, 135, 249-262.	1.8	14
33	Pathways to a European PhD for Thermal Energy Storage. International Journal of Learning and Teaching, 2017, , 189-193.	0.1	0
34	Industrial surplus heat transportation for use in district heating. Energy, 2016, 110, 139-147.	8.8	42
35	Polyols as phase change materials for surplus thermal energy storage. Applied Energy, 2016, 162, 1439-1452.	10.1	111
36	Energetic and exergetic analysis of alternative low-temperature based district heating substations arrangements. International Journal of Thermodynamics, 2016, 19, 71.	1.0	4

Јиѕтім Сніи

#	Article	IF	CITATIONS
37	Industrial Surplus Heat Storage in Smart Cities. , 2015, , .		4
38	Polyols as Phase Change Materials for Low-grade Excess Heat Storage. Energy Procedia, 2014, 61, 664-669.	1.8	13
39	Multistage latent heat cold thermal energy storage design analysis. Applied Energy, 2013, 112, 1438-1445.	10.1	81
40	Stratification analysis in packed bed thermal energy storage systems. Applied Energy, 2013, 109, 476-487.	10.1	71
41	Active free cooling optimization with thermal energy storage in Stockholm. Applied Energy, 2013, 109, 523-529.	10.1	39
42	Comparative study of different numerical models of packed bed thermal energy storage systems. Applied Thermal Engineering, 2013, 50, 384-392.	6.0	60
43	Submerged finned heat exchanger latent heat storage design and its experimental verification. Applied Energy, 2012, 93, 507-516.	10.1	71
44	Advanced Thermosyphon Cooling With Nanoporous Structured Mini Channel Evaporators. , 2009, , .		0