Noelia UrbÃ;n

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9485964/publications.pdf Version: 2024-02-01

NOFUA LIDRÃ:N

#	Article	IF	CITATIONS
1	Could a Different View of Quiescence Help Us Understand How Neurogenesis Is Regulated?. Frontiers in Neuroscience, 2022, 16, 878875.	1.4	7
2	Stem cell quiescence: the challenging path to activation. Development (Cambridge), 2021, 148, .	1.2	54
3	Coordinated changes in cellular behavior ensure the lifelong maintenance of the hippocampal stem cell population. Cell Stem Cell, 2021, 28, 863-876.e6.	5.2	106
4	Wnt/beta-catenin signalling is dispensable for adult neural stem cell homeostasis and activation. Development (Cambridge), 2021, 148, .	1.2	21
5	Introductions to the Community: Early-Career Researchers in the Time of COVID-19. Cell Stem Cell, 2020, 27, 508-510.	5.2	1
6	Quiescence of Adult Mammalian Neural Stem Cells: A Highly Regulated Rest. Neuron, 2019, 104, 834-848.	3.8	221
7	ld4 promotes the elimination of the pro-activation factor Ascl1 to maintain quiescence of adult hippocampal stem cells. ELife, 2019, 8, .	2.8	62
8	Nipbl Interacts with Zfp609 and the Integrator Complex to Regulate Cortical Neuron Migration. Neuron, 2017, 93, 348-361.	3.8	54
9	Return to quiescence of mouse neural stem cells by degradation of a proactivation protein. Science, 2016, 353, 292-295.	6.0	204
10	A Nuclear Role for miR-9 and Argonaute Proteins in Balancing Quiescent and Activated Neural Stem Cell States. Cell Reports, 2016, 17, 1383-1398.	2.9	57
11	A Transcriptional Mechanism Integrating Inputs from Extracellular Signals to Activate Hippocampal Stem Cells. Neuron, 2014, 83, 1085-1097.	3.8	190
12	Neurogenesis in the embryonic and adult brain: same regulators, different roles. Frontiers in Cellular Neuroscience, 2014, 8, 396.	1.8	390
13	FOXO3 Shares Common Targets with ASCL1 Genome-wide and Inhibits ASCL1-Dependent Neurogenesis. Cell Reports, 2013, 4, 477-491.	2.9	139
14	Epigenomic enhancer annotation reveals a key role for NFIX in neural stem cell quiescence. Genes and Development, 2013, 27, 1769-1786.	2.7	170
15	<i>Helios</i> Transcription Factor Expression Depends on <i>Gsx2</i> and <i>Dlx1&2</i> Function in Developing Striatal Matrix Neurons. Stem Cells and Development, 2012, 21, 2239-2251.	1.1	31
16	Ikarosâ€1 couples cell cycle arrest of late striatal precursors with neurogenesis of enkephalinergic neurons. Journal of Comparative Neurology, 2010, 518, 329-351.	0.9	36
17	Nolz1 promotes striatal neurogenesis through the regulation of retinoic acid signaling. Neural Development, 2010, 5, 21.	1.1	28
18	BDNF regulation under GFAP promoter provides engineered astrocytes as a new approach for long-term protection in Huntington's disease. Gene Therapy, 2010, 17, 1294-1308.	2.3	90

Noelia UrbÃin

#	Article	IF	CITATIONS
19	Interplay of leukemia inhibitory factor and retinoic acid on neural differentiation of mouse embryonic stem cells. Journal of Neuroscience Research, 2007, 85, 2686-2701.	1.3	27
20	Neuroprotection by GDNF-secreting stem cells in a Huntington's disease model: optical neuroimage tracking of brain-grafted cells. Gene Therapy, 2007, 14, 118-128.	2.3	71
21	Id4 Eliminates the Pro-Activation Factor Ascl1 to Maintain Quiescence of Adult Hippocampal Stem Cells. SSRN Electronic Journal, 0, , .	0.4	1