List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9485883/publications.pdf Version: 2024-02-01

OWEN A ROSS

#	Article	IF	CITATIONS
1	VPS35 Mutations in Parkinson Disease. American Journal of Human Genetics, 2011, 89, 162-167.	2.6	747
2	Neuropathologically defined subtypes of Alzheimer's disease with distinct clinical characteristics: a retrospective study. Lancet Neurology, The, 2011, 10, 785-796.	4.9	733
3	Identification of a Novel LRRK2 Mutation Linked to Autosomal Dominant Parkinsonism: Evidence of a Common Founder across European Populations. American Journal of Human Genetics, 2005, 76, 672-680.	2.6	524
4	Identification of common variants influencing risk of the tauopathy progressive supranuclear palsy. Nature Genetics, 2011, 43, 699-705.	9.4	502
5	Pharmacological Rescue of Mitochondrial Deficits in iPSC-Derived Neural Cells from Patients with Familial Parkinson's Disease. Science Translational Medicine, 2012, 4, 141ra90.	5.8	444
6	Association of LRRK2 exonic variants with susceptibility to Parkinson's disease: a case–control study. Lancet Neurology, The, 2011, 10, 898-908.	4.9	294
7	DCTN1 mutations in Perry syndrome. Nature Genetics, 2009, 41, 163-165.	9.4	285
8	Clinical Correlations With Lewy Body Pathology in <i>LRRK2</i> -Related Parkinson Disease. JAMA Neurology, 2015, 72, 100.	4.5	272
9	Clinicopathologic and ¹¹ C-Pittsburgh compound B implications of Thal amyloid phase across the Alzheimer's disease spectrum. Brain, 2015, 138, 1370-1381.	3.7	270
10	Metaâ€analysis of Parkinson's Disease: Identification of a novel locus, <i>RIT2</i> . Annals of Neurology, 2012, 71, 370-384.	2.8	264
11	DNAJC13 mutations in Parkinson disease. Human Molecular Genetics, 2014, 23, 1794-1801.	1.4	258
12	Translation Initiator EIF4G1 Mutations in Familial Parkinson Disease. American Journal of Human Genetics, 2011, 89, 398-406.	2.6	250
13	Chronic traumatic encephalopathy pathology in a neurodegenerative disorders brain bank. Acta Neuropathologica, 2015, 130, 877-889.	3.9	235
14	Genome-wide association meta-analysis of human longevity identifies a novel locus conferring survival beyond 90 years of age. Human Molecular Genetics, 2014, 23, 4420-4432.	1.4	227
15	Evidence for a role of the rare p.A152T variant in MAPT in increasing the risk for FTD-spectrum and Alzheimer's diseases. Human Molecular Genetics, 2012, 21, 3500-3512.	1.4	198
16	Genome sequencing analysis identifies new loci associated with Lewy body dementia and provides insights into its genetic architecture. Nature Genetics, 2021, 53, 294-303.	9.4	198
17	Investigating the genetic architecture of dementia with Lewy bodies: a two-stage genome-wide association study. Lancet Neurology, The, 2018, 17, 64-74.	4.9	195
18	Lrrk2 G2385R is an ancestral risk factor for Parkinson's disease in Asia. Parkinsonism and Related Disorders, 2007, 13, 89-92.	1.1	191

#	Article	IF	CITATIONS
19	Identification of novel risk loci for restless legs syndrome in genome-wide association studies in individuals of European ancestry: a meta-analysis. Lancet Neurology, The, 2017, 16, 898-907.	4.9	191
20	Association of <i>GBA</i> Mutations and the E326K Polymorphism With Motor and Cognitive Progression in Parkinson Disease. JAMA Neurology, 2016, 73, 1217.	4.5	185
21	Genetic analysis implicates APOE, SNCA and suggests lysosomal dysfunction in the etiology of dementia with Lewy bodies. Human Molecular Genetics, 2014, 23, 6139-6146.	1.4	178
22	Mitochondrial DNA polymorphism: its role in longevity of the Irish population. Experimental Gerontology, 2001, 36, 1161-1178.	1.2	165
23	Functional alteration of PARL contributes to mitochondrial dysregulation in Parkinson's disease. Human Molecular Genetics, 2011, 20, 1966-1974.	1.4	160
24	Frequency of cytokine polymorphisms in populations from western Europe, Africa, Asia, the Middle East and South America. Human Immunology, 2002, 63, 1055-1061.	1.2	151
25	Ataxin-2 repeat-length variation and neurodegeneration. Human Molecular Genetics, 2011, 20, 3207-3212.	1.4	147
26	(Pathoâ€)physiological relevance of <scp>PINK</scp> 1â€dependent ubiquitin phosphorylation. EMBO Reports, 2015, 16, 1114-1130.	2.0	147
27	Linkage Disequilibrium and Association of MAPT H1 in Parkinson Disease. American Journal of Human Genetics, 2004, 75, 669-677.	2.6	145
28	Expanding the clinical phenotype of <i>SNCA</i> duplication carriers. Movement Disorders, 2009, 24, 1811-1819.	2.2	124
29	<i>APOE</i> ε4 is associated with severity of Lewy body pathology independent of Alzheimer pathology. Neurology, 2018, 91, e1182-e1195.	1.5	122
30	Parkinsonian features in hereditary diffuse leukoencephalopathy with spheroids (HDLS) and CSF1R mutations. Parkinsonism and Related Disorders, 2013, 19, 869-877.	1.1	119
31	Differential clinicopathologic and genetic features of late-onset amnestic dementias. Acta Neuropathologica, 2014, 128, 411-421.	3.9	119
32	Heterozygous PINK1 p.G411S increases risk of Parkinson's disease via a dominant-negative mechanism. Brain, 2017, 140, 98-117.	3.7	116
33	LINGO1 and LINGO2 variants are associated with essential tremor and Parkinson disease. Neurogenetics, 2010, 11, 401-408.	0.7	114
34	Immune-related genetic enrichment in frontotemporal dementia: An analysis of genome-wide association studies. PLoS Medicine, 2018, 15, e1002487.	3.9	111
35	Novel pathogenic LRRK2 p.Asn1437His substitution in familial Parkinson's disease. Movement Disorders, 2010, 25, 2156-2163.	2.2	108
36	mt4216C variant in linkage with the mtDNA TJ cluster may confer a susceptibility to mitochondrial dysfunction resulting in an increased risk of Parkinson's disease in the Irish. Experimental Gerontology, 2003, 38, 397-405.	1.2	105

#	Article	IF	CITATIONS
37	Neuropathologically defined subtypes of Alzheimer's disease differ significantly from neurofibrillary tangle-predominant dementia. Acta Neuropathologica, 2012, 124, 681-692.	3.9	103
38	A Swedish family with de novo α-synuclein A53T mutation: Evidence for early cortical dysfunction. Parkinsonism and Related Disorders, 2009, 15, 627-632.	1.1	101
39	A comparative analysis of leucine-rich repeat kinase 2 (Lrrk2) expression in mouse brain and Lewy body disease. Neuroscience, 2007, 147, 1047-1058.	1.1	100
40	A multi-centre clinico-genetic analysis of the VPS35 gene in Parkinson disease indicates reduced penetrance for disease-associated variants. Journal of Medical Genetics, 2012, 49, 721-726.	1.5	94
41	Independent and joint effects of the <i>MAPT</i> and <i>SNCA</i> genes in Parkinson disease. Annals of Neurology, 2011, 69, 778-792.	2.8	92
42	Shared genetic risk between corticobasal degeneration, progressive supranuclear palsy, and frontotemporal dementia. Acta Neuropathologica, 2017, 133, 825-837.	3.9	90
43	APOE4 exacerbates α-synuclein pathology and related toxicity independent of amyloid. Science Translational Medicine, 2020, 12, .	5.8	90
44	Age- and disease-dependent increase of the mitophagy marker phospho-ubiquitin in normal aging and Lewy body disease. Autophagy, 2018, 14, 1404-1418.	4.3	87
45	A nonsynonymous mutation in PLCG2 reduces the risk of Alzheimer's disease, dementia with Lewy bodies and frontotemporal dementia, and increases the likelihood of longevity. Acta Neuropathologica, 2019, 138, 237-250.	3.9	87
46	αâ€synuclein genetic variability: A biomarker for dementia in Parkinson disease. Annals of Neurology, 2016, 79, 991-999.	2.8	85
47	Epigenetic regulation in Parkinson's disease. Acta Neuropathologica, 2016, 132, 515-530.	3.9	84
48	Selective Genetic Overlap Between Amyotrophic Lateral Sclerosis and Diseases of the Frontotemporal Dementia Spectrum. JAMA Neurology, 2018, 75, 860.	4.5	79
49	Genome-wide association study in essential tremor identifies three new loci. Brain, 2016, 139, 3163-3169.	3.7	78
50	Interleukin-6-gene C/G 174 polymorphism in nonagenarian and octogenarian subjects in the BELFAST study. Reciprocal effects on IL-6, soluble IL-6 receptor and for IL-10 in serum and monocyte supernatants. Mechanisms of Ageing and Development, 2003, 124, 555-561.	2.2	72
51	Identification of potential protein interactors of Lrrk2. Parkinsonism and Related Disorders, 2007, 13, 382-385.	1.1	69
52	Structural and Functional Impact of Parkinson Disease-Associated Mutations in the E3 Ubiquitin Ligase Parkin. Human Mutation, 2015, 36, 774-786.	1.1	69
53	Sex and age interact to determine clinicopathologic differences in Alzheimer's disease. Acta Neuropathologica, 2018, 136, 873-885.	3.9	69
54	Hippocampal sclerosis in Lewy body disease is a TDP-43 proteinopathy similar to FTLD-TDP Type A. Acta Neuropathologica, 2015, 129, 53-64.	3.9	67

#	Article	IF	CITATIONS
55	Study of age-association with cytokine gene polymorphisms in an aged Irish population. Mechanisms of Ageing and Development, 2003, 124, 199-206.	2.2	66
56	LINGO1 rs9652490 is associated with essential tremor and Parkinson disease. Parkinsonism and Related Disorders, 2010, 16, 109-111.	1.1	66
57	Novel mutation in MAPT exon 13 (p.N410H) causes corticobasal degeneration. Acta Neuropathologica, 2014, 127, 271-282.	3.9	66
58	Atypical multiple system atrophy is a new subtype of frontotemporal lobar degeneration: frontotemporal lobar degeneration associated with α-synuclein. Acta Neuropathologica, 2015, 130, 93-105.	3.9	65
59	Functional promoter region polymorphism of the proinflammatory chemokine IL-8 gene associates with Parkinson's disease in the Irish. Human Immunology, 2004, 65, 340-346.	1.2	63
60	Association of α-, β-, and γ-Synuclein With Diffuse Lewy Body Disease. Archives of Neurology, 2010, 67, 970-5.	4.9	63
61	Novel A18T and pA29S substitutions in α-synuclein may be associated with sporadic Parkinson's disease. Parkinsonism and Related Disorders, 2013, 19, 1057-1060.	1.1	63
62	Familial genes in sporadic disease: Common variants of α-synuclein gene associate with Parkinson's disease. Mechanisms of Ageing and Development, 2007, 128, 378-382.	2.2	62
63	DCTN1-related neurodegeneration: Perry syndrome and beyond. Parkinsonism and Related Disorders, 2017, 41, 14-24.	1.1	62
64	Genetic variation of Omi/HtrA2 and Parkinson's disease. Parkinsonism and Related Disorders, 2008, 14, 539-543.	1.1	61
65	LRRK2 mutations are a common cause of Parkinson's disease in Spain. European Journal of Neurology, 2006, 13, 391-394.	1.7	60
66	Cerebellar ataxia in progressive supranuclear palsy: An autopsy study of PSP . Movement Disorders, 2016, 31, 653-662.	2.2	60
67	Corticobasal degeneration with TDP-43 pathology presenting with progressive supranuclear palsy syndrome: a distinct clinicopathologic subtype. Acta Neuropathologica, 2018, 136, 389-404.	3.9	59
68	Frontotemporal dementia-associated N279K tau mutant disrupts subcellular vesicle trafficking and induces cellular stress in iPSC-derived neural stem cells. Molecular Neurodegeneration, 2015, 10, 46.	4.4	58
69	SLC20A2 and THAP1 deletion in familial basal ganglia calcification with dystonia. Neurogenetics, 2014, 15, 23-30.	0.7	56
70	Lrrk2 G2019S substitution in frontotemporal lobar degeneration with ubiquitin-immunoreactive neuronal inclusions. Acta Neuropathologica, 2007, 113, 601-606.	3.9	55
71	Replication of progressive supranuclear palsy genome-wide association study identifies SLCO1A2 and DUSP10 as new susceptibility loci. Molecular Neurodegeneration, 2018, 13, 37.	4.4	54
72	Genomewide Association, Parkinson Disease, and PARK10. American Journal of Human Genetics, 2006, 78, 1084-1088.	2.6	53

#	Article	IF	CITATIONS
73	Digenic parkinsonism: Investigation of the synergistic effects of PRKN and LRRK2. Neuroscience Letters, 2006, 410, 80-84.	1.0	52
74	Phenotypic associations of tau and ApoE in Parkinson's disease. Neuroscience Letters, 2007, 414, 141-144.	1.0	51
75	Association of the <i>MAPT</i> locus with Parkinson's disease. European Journal of Neurology, 2010, 17, 483-486.	1.7	51
76	Plasma neurofilament light predicts mortality in patients with stroke. Science Translational Medicine, 2020, 12, .	5.8	51
77	TARDBP mutations in Parkinson's disease. Parkinsonism and Related Disorders, 2013, 19, 312-315.	1.1	49
78	Clinicopathologic heterogeneity in frontotemporal dementia and parkinsonism linked to chromosome 17 (FTDPâ€17) due to microtubuleâ€associated protein tau (MAPT) p.P301L mutation, including a patient with globular glial tauopathy. Neuropathology and Applied Neurobiology, 2017, 43, 200-214.	1.8	49
79	Lrrk2-associated parkinsonism is a major cause of disease in Northern Spain. Parkinsonism and Related Disorders, 2007, 13, 509-515.	1.1	48
80	<scp>S</scp> tudy of <i>LRRK2</i> variation in tauopathy: Progressive supranuclear palsy and corticobasal degeneration. Movement Disorders, 2017, 32, 115-123.	2.2	48
81	Atypical parkinsonian syndromes: a general neurologist's perspective. European Journal of Neurology, 2018, 25, 41-58.	1.7	46
82	Principal-Component Analysis for Assessment of Population Stratification in Mitochondrial Medical Genetics. American Journal of Human Genetics, 2010, 86, 904-917.	2.6	45
83	Cenetic Screening and Functional Characterization of <i>PDGFRB</i> Mutations Associated with Basal Ganglia Calcification of Unknown Etiology. Human Mutation, 2014, 35, 964-971.	1.1	45
84	Identification of genetic modifiers of age-at-onset for familial Parkinson's disease. Human Molecular Genetics, 2016, 25, 3849-3862.	1.4	44
85	Transcriptomic analysis to identify genes associated with selective hippocampal vulnerability in Alzheimer's disease. Nature Communications, 2021, 12, 2311.	5.8	44
86	Glucocerebrosidase mutations in diffuse Lewy body disease. Parkinsonism and Related Disorders, 2011, 17, 55-57.	1.1	43
87	TDPâ€43 pathology in multiple system atrophy: colocalization of TDPâ€43 and αâ€synuclein in glial cytoplasmic inclusions. Neuropathology and Applied Neurobiology, 2018, 44, 707-721.	1.8	43
88	Three sib-pairs of autopsy-confirmed progressive supranuclear palsy. Parkinsonism and Related Disorders, 2015, 21, 101-105.	1.1	42
89	Comparison of clinical features among Parkinson's disease subtypes: A large retrospective study in a single center. Journal of the Neurological Sciences, 2018, 386, 39-45.	0.3	42
90	Parkinson's disease: the genetics of a heterogeneous disorder. European Journal of Neurology, 2006, 13, 616-627.	1.7	41

#	Article	IF	CITATIONS
91	<i>FGF20</i> and Parkinson's disease: No evidence of association or pathogenicity via αâ€synuclein expression. Movement Disorders, 2009, 24, 455-459.	2.2	41
92	Early-onset Parkinson's disease due to PINK1 p.Q456X mutation – Clinical and functional study. Parkinsonism and Related Disorders, 2014, 20, 1274-1278.	1.1	41
93	First neuropathological description of a patient with Parkinson's disease and LRRK2 p.N1437H mutation. Parkinsonism and Related Disorders, 2012, 18, 332-338.	1.1	40
94	Analysis of COQ2gene in multiple system atrophy. Molecular Neurodegeneration, 2014, 9, 44.	4.4	40
95	Pathophysiology, pleotrophy and paradigm shifts: genetic lessons from Parkinson's disease. Biochemical Society Transactions, 2005, 33, 586-590.	1.6	39
96	Association of <i>MAPT</i> Subhaplotypes With Risk of Progressive Supranuclear Palsy and Severity of Tau Pathology. JAMA Neurology, 2019, 76, 710.	4.5	39
97	Clinical traits of LRRK2-associated Parkinson's disease in Ireland: A link between familial and idiopathic PD. Parkinsonism and Related Disorders, 2005, 11, 349-352.	1.1	38
98	Genetic variation of the mitochondrial complex I subunit NDUFV2 and Parkinson's disease. Parkinsonism and Related Disorders, 2010, 16, 686-687.	1.1	38
99	A novel tau mutation, p.K317N, causes globular glial tauopathy. Acta Neuropathologica, 2015, 130, 199-214.	3.9	38
100	Analysis of the C9orf72 repeat in Parkinson's disease, essential tremor and restless legs syndrome. Parkinsonism and Related Disorders, 2013, 19, 198-201.	1.1	37
101	<i>APOE3</i> Jacksonville (V236E) variant reduces self-aggregation and risk of dementia. Science Translational Medicine, 2021, 13, eabc9375.	5.8	37
102	HLA haplotypes and TNF polymorphism do not associate with longevity in the Irish. Mechanisms of Ageing and Development, 2003, 124, 563-567.	2.2	36
103	Lrrk2 R1441 substitution and progressive supranuclear palsy. Neuropathology and Applied Neurobiology, 2006, 32, 23-25.	1.8	36
104	Glucosidase-beta variations and Lewy body disorders. Parkinsonism and Related Disorders, 2009, 15, 414-416.	1.1	36
105	Human leukocyte antigen variation and Parkinson's disease. Parkinsonism and Related Disorders, 2011, 17, 376-378.	1.1	36
106	Increased frequency of the 2437T allele of the heat shock protein 70-Hom gene in an aged Irish population. Experimental Gerontology, 2003, 38, 561-565.	1.2	35
107	Quantitative PCR-based screening of α-synuclein multiplication in multiple system atrophy. Parkinsonism and Related Disorders, 2007, 13, 340-342.	1.1	35
108	Common mitochondrial sequence variants in ischemic stroke. Annals of Neurology, 2011, 69, 471-480.	2.8	35

#	Article	IF	CITATIONS
109	Leucine-rich repeat kinase 1: a paralog of LRRK2 and a candidate gene for Parkinson's disease. Neurogenetics, 2007, 8, 95-102.	0.7	34
110	<i>SNCA</i> , <i>MAPT</i> , and <i>GSK3B</i> in Parkinson disease: a gene-gene interaction study. European Journal of Neurology, 2011, 18, 876-881.	1.7	34
111	Investigating the role of FUS exonic variants in Essential Tremor. Parkinsonism and Related Disorders, 2013, 19, 755-757.	1.1	34
112	A molecular pathology, neurobiology, biochemical, genetic and neuroimaging study of progressive apraxia of speech. Nature Communications, 2021, 12, 3452.	5.8	34
113	LRRK2 mutations are not common in Alzheimer's disease. Mechanisms of Ageing and Development, 2005, 126, 1201-1205.	2.2	33
114	LRRK2 mutations and Parkinsonism. Lancet, The, 2005, 365, 1229-1230.	6.3	33
115	Common Variants Within Oxidative Phosphorylation Genes Influence Risk of Ischemic Stroke and Intracerebral Hemorrhage. Stroke, 2013, 44, 612-619.	1.0	33
116	Linking the VPS35 and EIF4G1 Pathways in Parkinson's Disease. Neuron, 2015, 85, 1-3.	3.8	33
117	Mitochondrial DNA damage in lymphocytes: a role in immunosenescence?. Experimental Gerontology, 2002, 37, 329-340.	1.2	32
118	<i>MAPT</i> haplotype H1G is associated with increased risk of dementia with Lewy bodies. Alzheimer's and Dementia, 2016, 12, 1297-1304.	0.4	32
119	Haplotype analysis of Lrrk2 R1441H carriers with parkinsonism. Parkinsonism and Related Disorders, 2009, 15, 466-467.	1.1	31
120	Full sequencing and haplotype analysis of <i>MAPT</i> in Parkinson's disease and rapid eye movement sleep behavior disorder. Movement Disorders, 2018, 33, 1016-1020.	2.2	31
121	Genetics of Parkinson disease and essential tremor. Current Opinion in Neurology, 2010, 23, 388-393.	1.8	31
122	Glucocerebrosidase mutations are not a common risk factor for Parkinson disease in North Africa. Neuroscience Letters, 2010, 477, 57-60.	1.0	30
123	Populationâ€specific frequencies for <i>LRRK2</i> susceptibility variants in the genetic epidemiology of Parkinson's disease (GEOâ€PD) consortium. Movement Disorders, 2013, 28, 1740-1744.	2.2	30
124	LRRK2 variation and dementia with Lewy bodies. Parkinsonism and Related Disorders, 2016, 31, 98-103.	1.1	30
125	Parkinson-Associated SNCA Enhancer Variants Revealed by Open Chromatin in Mouse Dopamine Neurons. American Journal of Human Genetics, 2018, 103, 874-892.	2.6	30
126	Genomewide Association Studies of <scp><i>LRRK2</i></scp> Modifiers of Parkinson's Disease. Annals of Neurology, 2021, 90, 76-88.	2.8	30

#	Article	IF	CITATIONS
127	NOTCH3 Variants and Risk of Ischemic Stroke. PLoS ONE, 2013, 8, e75035.	1.1	30
128	Clinical Heterogeneity of the LRRK2 G2019S Mutation. Archives of Neurology, 2006, 63, 1242.	4.9	29
129	Heritability and genetic variance of dementia with Lewy bodies. Neurobiology of Disease, 2019, 127, 492-501.	2.1	29
130	Fine-mapping and candidate gene investigation within the PARK10 locus. European Journal of Human Genetics, 2009, 17, 336-343.	1.4	28
131	Genetic variants associated with myocardial infarction in the <scp><i>PSMA6</i></scp> gene and <scp>C</scp> hr9p21 are also associated with ischaemic stroke. European Journal of Neurology, 2013, 20, 300-308.	1.7	28
132	TREM2 R47H variant and risk of essential tremor: A cross-sectional international multicenter study. Parkinsonism and Related Disorders, 2015, 21, 306-309.	1.1	28
133	A Novel Tau Mutation in Exon 12, p.Q336H, Causes Hereditary Pick Disease. Journal of Neuropathology and Experimental Neurology, 2015, 74, 1042-1052.	0.9	27
134	Lrrk2 R1628P in nonâ€Chinese Asian races. Annals of Neurology, 2008, 64, 472-473.	2.8	26
135	Reported mutations in <i>GIGYF2</i> are not a common cause of Parkinson's disease. Movement Disorders, 2009, 24, 619-620.	2.2	26
136	Occurrence of Crohn's disease with Parkinson's disease. Parkinsonism and Related Disorders, 2017, 37, 116-117.	1.1	26
137	Using global team science to identify genetic parkinson's disease worldwide. Annals of Neurology, 2019, 86, 153-157.	2.8	26
138	Tau and MAPT genetics in tauopathies and synucleinopathies. Parkinsonism and Related Disorders, 2021, 90, 142-154.	1.1	26
139	VPS35 and DNAJC13 disease-causing variants in essential tremor. European Journal of Human Genetics, 2015, 23, 887-888.	1.4	25
140	Adultâ€onset cerebelloâ€brainstem dominant form of Xâ€linked adrenoleukodystrophy presenting as multiple system atrophy: case report and literature review. Neuropathology, 2016, 36, 64-76.	0.7	25
141	Variants in the LRRK1 gene and susceptibility to Parkinson's disease in Norway. Neuroscience Letters, 2007, 416, 299-301.	1.0	24
142	ELAVL4, PARK10, and the Celts. Movement Disorders, 2007, 22, 585-587.	2.2	24
143	Three families with Perry syndrome from distinct parts of the world. Parkinsonism and Related Disorders, 2014, 20, 884-888.	1.1	24
144	Lrrk2 mutations in South America: A study of Chilean Parkinson's disease. Neuroscience Letters, 2007, 422, 193-197.	1.0	23

#	Article	IF	CITATIONS
145	Comprehensive sequencing of the <i>LRRK2</i> gene in patients with familial Parkinson's disease from North Africa. Movement Disorders, 2010, 25, 2052-2058.	2.2	23
146	Angiogenin variation and Parkinson disease. Annals of Neurology, 2012, 71, 725-727.	2.8	23
147	MAPT haplotype diversity in multiple system atrophy. Parkinsonism and Related Disorders, 2016, 30, 40-45.	1.1	23
148	Histamine N-methyltransferase Thr105Ile is not associated with Parkinson's disease or essential tremor. Parkinsonism and Related Disorders, 2010, 16, 112-114.	1.1	22
149	DNAJC13 p.Asn855Ser mutation screening in Parkinson's disease and pathologically confirmed Lewy body disease patients. European Journal of Neurology, 2015, 22, 1323-1325.	1.7	21
150	RAB39B gene mutations are not a common cause of Parkinson's disease or dementia with Lewy bodies. Neurobiology of Aging, 2016, 45, 107-108.	1.5	21
151	Lewy Body Disease is a Contributor to Logopenic Progressive Aphasia Phenotype. Annals of Neurology, 2021, 89, 520-533.	2.8	21
152	Investigation of KIR diversity in immunosenecence and longevity within the Irish population. Experimental Gerontology, 2004, 39, 1223-1232.	1.2	20
153	Alphaâ€synuclein polymorphisms are associated with Parkinson's disease in a Saskatchewan population. Movement Disorders, 2009, 24, 2411-2414.	2.2	20
154	Sequence variants in eukaryotic translation initiation factor 4-gamma (elF4G1) are associated with Lewy body dementia. Acta Neuropathologica, 2013, 125, 425-438.	3.9	20
155	Low density lipoprotein receptor related protein 1 and 6 gene variants and ischaemic stroke risk. European Journal of Neurology, 2015, 22, 1235-1241.	1.7	20
156	Phactr2 and Parkinson's disease. Neuroscience Letters, 2009, 453, 9-11.	1.0	19
157	Mitochondrial translation initiation factor 3 polymorphism and Parkinson's disease. Neuroscience Letters, 2010, 486, 228-230.	1.0	19
158	<i>LRRK2</i> haplotypeâ€sharing analysis in Parkinson's disease reveals a novel p.S1761R mutation. Movement Disorders, 2012, 27, 146-150.	2.2	19
159	Genetic variation of the retromer subunits VPS26A/B-VPS29 in Parkinson's disease. Neurobiology of Aging, 2014, 35, 1958.e1-1958.e2.	1.5	19
160	The unresolved role of mitochondrial DNA in Parkinson's disease: An overview of published studies, their limitations, and future prospects. Neurochemistry International, 2019, 129, 104495.	1.9	19
161	Heterodimerization of Lrrk1–Lrrk2: Implications for LRRK2-associated Parkinson disease. Mechanisms of Ageing and Development, 2010, 131, 210-214.	2.2	18
162	Tremor in progressive supranuclear palsy. Parkinsonism and Related Disorders, 2016, 27, 93-97.	1.1	17

#	Article	IF	CITATIONS
163	Parkinson's disease susceptibility variants and severity of Lewy body pathology. Parkinsonism and Related Disorders, 2017, 44, 79-84.	1.1	17
164	Clinical characteristics of Parkinson's disease among Jewish Ethnic groups in Israel. Journal of Neural Transmission, 2008, 115, 1279-1284.	1.4	16
165	CHCHD2 and Parkinson's disease. Lancet Neurology, The, 2015, 14, 679.	4.9	16
166	Genetic susceptibility variants in parkinsonism. Parkinsonism and Related Disorders, 2016, 22, S7-S11.	1.1	16
167	Lrrk2 p.Q1111H substitution and Parkinson's disease in Latin America. Parkinsonism and Related Disorders, 2011, 17, 629-631.	1.1	15
168	Association of Parkinson disease age of onset with DRD2, DRD3 and GRIN2B polymorphisms. Parkinsonism and Related Disorders, 2016, 22, 102-105.	1.1	15
169	Regional analysis and genetic association of nigrostriatal degeneration in Lewy body disease. Movement Disorders, 2017, 32, 1584-1593.	2.2	15
170	Multiple system atrophy and apolipoprotein E. Movement Disorders, 2018, 33, 647-650.	2.2	15
171	Association of <i>MAPT</i> H1 subhaplotypes with neuropathology of lewy body disease. Movement Disorders, 2019, 34, 1325-1332.	2.2	15
172	Global distribution and reduced penetrance: Lrrk2 R1441C in an Irish Parkinson's disease kindred. Movement Disorders, 2007, 22, 291-292.	2.2	14
173	Genetic variants of αâ€synuclein are not associated with essential tremor. Movement Disorders, 2011, 26, 2552-2556.	2.2	14
174	Latin America's first case of Perry syndrome and a new treatment option for respiratory insufficiency. Journal of Neurology, 2014, 261, 620-621.	1.8	14
175	A Prognostic View on the Application of Individualized Genomics in Parkinson's Disease. Current Genetic Medicine Reports, 2013, 1, 52-57.	1.9	13
176	EIF4G1 gene mutations are not a common cause of Parkinson's disease in the Japanese population. Parkinsonism and Related Disorders, 2014, 20, 659-661.	1.1	13
177	Whole-Exome Sequencing as a Diagnostic Tool in a Family With Episodic Ataxia Type 1. Mayo Clinic Proceedings, 2015, 90, 366-371.	1.4	13
178	Advancing Stroke Therapeutics Through Genetic Understanding. Current Drug Targets, 2007, 8, 850-859.	1.0	12
179	DRD3 Ser9Gly and HS1BP3 Ala265Gly are not associated with Parkinson disease. Neuroscience Letters, 2009, 461, 74-75.	1.0	12
180	Parkinson's disease in Nigeria: A review of published studies and recommendations for future research. Parkinsonism and Related Disorders, 2019, 62, 36-43.	1.1	12

#	Article	IF	CITATIONS
181	<i>LRRK2</i> variation and Parkinson's disease in African Americans. Movement Disorders, 2010, 25, 1973-1976.	2.2	11
182	Mitochondrial membrane protein-associated neurodegeneration. Parkinsonism and Related Disorders, 2017, 39, 1-3.	1.1	11
183	LRP10 in α-synucleinopathies. Lancet Neurology, The, 2018, 17, 1033-1034.	4.9	11
184	LRP10 in α-synucleinopathies. Lancet Neurology, The, 2018, 17, 1032-1033.	4.9	11
185	Dopamine β-hydroxylase â^'1021C>T association and Parkinson's disease. Parkinsonism and Related Disorders, 2008, 14, 544-547.	1.1	10
186	<i>Calbindinâ€1</i> association and Parkinson's disease. European Journal of Neurology, 2010, 17, 208-211.	1.7	10
187	PARK2 variability in Polish Parkinson's disease patients - interaction with mitochondrial haplogroups. Parkinsonism and Related Disorders, 2012, 18, 520-524.	1.1	10
188	Analysis of Nuclear Export Sequence Regions of FUS-Related RNA-Binding Proteins in Essential Tremor. PLoS ONE, 2014, 9, e111989.	1.1	10
189	Chromosome 22q11.2 deletion may contain a locus for recessive early-onset Parkinson's disease. Parkinsonism and Related Disorders, 2014, 20, 945-946.	1.1	10
190	Rare variants in <i>MC1R/TUBB3</i> exon 1 are not associated with <scp>P</scp> arkinson's disease. Annals of Neurology, 2016, 79, 331-331.	2.8	10
191	Frequency of spinocerebellar ataxia mutations in patients with multiple system atrophy. Clinical Autonomic Research, 2021, 31, 117-125.	1.4	10
192	Pathogenic Lrrk2 substitutions and Amyotrophic lateral sclerosis. Journal of Neural Transmission, 2007, 114, 327-329.	1.4	9
193	Association of pyridoxal kinase and Parkinson disease. Annals of Neurology, 2010, 67, 409-411.	2.8	9
194	Parkinson disease—moving beyond association. Nature Reviews Neurology, 2010, 6, 305-307.	4.9	9
195	Partial loss of function of colonyâ€stimulating factor 1 receptor in a patient with white matter abnormalities. European Journal of Neurology, 2018, 25, 875-881.	1.7	9
196	Associations of mitochondrial genomic variation with corticobasal degeneration, progressive supranuclear palsy, and neuropathological tau measures. Acta Neuropathologica Communications, 2020, 8, 162.	2.4	9
197	Pathogenicity of the Lrrk2 R1514Q substitution in Parkinson's disease. Movement Disorders, 2007, 22, 389-392.	2.2	8
198	<i>GRN</i> 3′UTR+78 C>T is not associated with risk for Parkinson's disease. European Journal of Neurology, 2009, 16, 909-911.	1.7	8

#	Article	IF	CITATIONS
199	Association of <i>MAPT</i> subhaplotypes with clinical and demographic features in Parkinson's disease. Annals of Clinical and Translational Neurology, 2020, 7, 1557-1563.	1.7	8
200	Lack of evidence for association of Parkin promoter polymorphism (PRKN-258) with increased risk of Parkinson's disease. Parkinsonism and Related Disorders, 2007, 13, 386-388.	1.1	6
201	Death-associated protein kinase 1 variation and Parkinson's disease. European Journal of Neurology, 2011, 18, 1090-1093.	1.7	6
202	A familial form of parkinsonism, dementia, and motor neuron disease: A longitudinal study. Parkinsonism and Related Disorders, 2014, 20, 1129-1134.	1.1	6
203	X-Linked Lymphoproliferative Syndrome Presenting as Adult-Onset Multi-Infarct Dementia. Journal of Neuropathology and Experimental Neurology, 2019, 78, 460-466.	0.9	6
204	Association of <i>Tripartite Motif Containing 11</i> rs564309 With Tau Pathology in Progressive Supranuclear Palsy. Movement Disorders, 2020, 35, 890-894.	2.2	6
205	LRP10 variants in progressive supranuclear palsy. Neurobiology of Aging, 2020, 94, 311.e5-311.e10.	1.5	6
206	Caffeine and Parkinson's disease: are we getting our fix on risk-modifying gene-environment interactions?. European Journal of Neurology, 2011, 18, 671-672.	1.7	5
207	<scp>GRN</scp> Mutations Are Associated with Lewy Body Dementia. Movement Disorders, 2022, 37, 1943-1948.	2.2	5
208	Longevics: Genetic lessons for the ages. Irish Journal of Medical Science, 2006, 175, 82-82.	0.8	4
209	Common variants in Parkinson's disease. Movement Disorders, 2007, 22, 899-900.	2.2	4
210	Copy Number Variation in Parkinson's Disease: An Update from <scp>Sub aharan</scp> Africa. Movement Disorders, 2021, 36, 2442-2444.	2.2	4
211	Screening of <scp><i>GBA</i></scp> Mutations in Nigerian Patients with Parkinson's Disease. Movement Disorders, 2021, 36, 2971-2973.	2.2	4
212	Modifiers of LRRK2 parkinsonism: new therapeutic targets. Lancet Neurology, The, 2016, 15, 1200-1201.	4.9	2
213	A novel link between trafficking and Lewy body disorders. Lancet Neurology, The, 2018, 17, 571-573.	4.9	1
214	Association of Mitochondrial DNA Genomic Variation With Risk of Pick Disease. Neurology, 2021, 96, e1755-e1760.	1.5	1
215	Dancing Feet Dyskinesia in a Patient with GBA-PD. Journal of Movement Disorders, 2022, 15, 83-85.	0.7	0
216	Exonic Re-Sequencing of the Chromosome 2q24.3 Parkinson's Disease Locus. PLoS ONE, 2015, 10, e0128586.	1.1	0