
## Pedro E SÃ;nchez-Jiménez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/948562/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                            | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Influence of AC fields and electrical conduction mechanisms on the flash-onset temperature:<br>Electronic (BiFeO3) vs. ionic conductors (8YSZ). Ceramics International, 2023, 49, 14834-14843.                                                     | 2.3 | 2         |
| 2  | Predictions of polymer thermal degradation: relevance of selecting the proper kinetic model. Journal of Thermal Analysis and Calorimetry, 2022, 147, 2335-2341.                                                                                    | 2.0 | 11        |
| 3  | A novel Multiâ€Phase Flash Sintering (MPFS) technique for 3D complexâ€shaped ceramics. Applied<br>Materials Today, 2022, 26, 101274.                                                                                                               | 2.3 | 6         |
| 4  | Overlooked pitfalls in CaO carbonation kinetics studies nearby equilibrium: Instrumental effects on calculated kinetic rate constants. AEJ - Alexandria Engineering Journal, 2022, 61, 6129-6138.                                                  | 3.4 | 1         |
| 5  | Effect of Steam Injection during Carbonation on the Multicyclic Performance of Limestone<br>(CaCO <sub>3</sub> ) under Different Calcium Looping Conditions: A Comparative Study. ACS<br>Sustainable Chemistry and Engineering, 2022, 10, 850-859. | 3.2 | 20        |
| 6  | Flash Sintering Research Perspective: A Bibliometric Analysis. Materials, 2022, 15, 416.                                                                                                                                                           | 1.3 | 14        |
| 7  | The SrCO3/SrO system for thermochemical energy storage at ultra-high temperature. Solar Energy<br>Materials and Solar Cells, 2022, 238, 111632.                                                                                                    | 3.0 | 10        |
| 8  | Steam-enhanced calcium-looping performance of limestone for thermochemical energy storage: The role of particle size. Journal of Energy Storage, 2022, 51, 104305.                                                                                 | 3.9 | 14        |
| 9  | Albero: An alternative natural material for solar energy storage by the calcium-looping process.<br>Chemical Engineering Journal, 2022, 440, 135707.                                                                                               | 6.6 | 15        |
| 10 | Thermal behavior of ammonium fluorosilicates complexes: Obtaining and kinetic analysis. Chemical<br>Engineering Research and Design, 2022, 182, 490-501.                                                                                           | 2.7 | 8         |
| 11 | Kinetic study of complex processes composed of non-independent stages: pyrolysis of natural rubber.<br>Polymer Degradation and Stability, 2021, 188, 109590.                                                                                       | 2.7 | 14        |
| 12 | Unveiling mechanochemistry: Kinematic-kinetic approach for the prediction of mechanically induced reactions. Journal of Alloys and Compounds, 2021, 866, 158925.                                                                                   | 2.8 | 11        |
| 13 | Paving the Way to Establish Protocols: Modeling and Predicting Mechanochemical Reactions. Journal of Physical Chemistry Letters, 2021, 12, 5540-5546.                                                                                              | 2.1 | 6         |
| 14 | Calcination under low CO2 pressure enhances the calcium Looping performance of limestone for thermochemical energy storage. Chemical Engineering Journal, 2021, 417, 127922.                                                                       | 6.6 | 24        |
| 15 | Kinetics and cyclability of limestone (CaCO3) in presence of steam during calcination in the CaL scheme for thermochemical energy storage. Chemical Engineering Journal, 2021, 417, 129194.                                                        | 6.6 | 45        |
| 16 | Pure perovskite BiFeO3–BaTiO3 ceramics prepared by reaction flash sintering of Bi2O3–Fe2O3–BaTiO3<br>mixed powders. Ceramics International, 2021, 47, 26947-26954.                                                                                 | 2.3 | 29        |
| 17 | Relevance of Particle Size Distribution to Kinetic Analysis: The Case of Thermal Dehydroxylation of<br>Kaolinite. Processes, 2021, 9, 1852.                                                                                                        | 1.3 | 10        |
| 18 | Advanced parametrisation of phase change materials through kinetic approach. Journal of Energy<br>Storage, 2021, 44, 103441.                                                                                                                       | 3.9 | 7         |

| #  | Article                                                                                                                                                                                                       | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Processing and properties of Bi <sub>0.98</sub> R <sub>0.02</sub> FeO <sub>3</sub> (RÂ=ÂLa, Sm, Y)<br>ceramics flash sintered at ~650°C in <5Âs. Journal of the American Ceramic Society, 2020, 103, 136-144. | 1.9 | 7         |
| 20 | Role of particle size on the multicycle calcium looping activity of limestone for thermochemical energy storage. Journal of Advanced Research, 2020, 22, 67-76.                                               | 4.4 | 58        |
| 21 | Control of experimental conditions in reaction flash-sintering of complex stoichiometry ceramics.<br>Ceramics International, 2020, 46, 29413-29420.                                                           | 2.3 | 17        |
| 22 | Development of a high-pressure thermobalance working under constantÂrate thermal analysis. Journal of Thermal Analysis and Calorimetry, 2020, 142, 1329-1334.                                                 | 2.0 | 1         |
| 23 | Calcium-Looping Performance of Biomineralized CaCO <sub>3</sub> for CO <sub>2</sub> Capture and Thermochemical Energy Storage. Industrial & Engineering Chemistry Research, 2020, 59, 12924-12933.            | 1.8 | 33        |
| 24 | Insight into the BiFeO3 flash sintering process by in-situ energy dispersive X-ray diffraction (ED-XRD).<br>Ceramics International, 2019, 45, 2828-2834.                                                      | 2.3 | 23        |
| 25 | Sampleâ€Controlled analysis under high pressure for accelerated process studies. Journal of the<br>American Ceramic Society, 2019, 102, 1338-1346.                                                            | 1.9 | 1         |
| 26 | Electrical properties of bismuth ferrites: Bi2Fe4O9 and Bi25FeO39. Journal of the European Ceramic Society, 2019, 39, 330-339.                                                                                | 2.8 | 23        |
| 27 | High-performance and low-cost macroporous calcium oxide based materials for thermochemical energy storage in concentrated solar power plants. Applied Energy, 2019, 235, 543-552.                             | 5.1 | 115       |
| 28 | Anisotropic lattice expansion determined during flash sintering of BiFeO3 by in-situ energy-dispersive<br>X-ray diffraction. Scripta Materialia, 2019, 162, 286-291.                                          | 2.6 | 21        |
| 29 | Multicycle CO2 capture activity and fluidizability of Al-based synthesized CaO sorbents. Chemical Engineering Journal, 2019, 358, 679-690.                                                                    | 6.6 | 90        |
| 30 | Pressure Effect on the Multicycle Activity of Natural Carbonates and a Ca/Zr Composite for Energy<br>Storage of Concentrated Solar Power. ACS Sustainable Chemistry and Engineering, 2018, 6, 7849-7858.      | 3.2 | 44        |
| 31 | Crystallization Kinetics of Nanocrystalline Materials by Combined X-ray Diffraction and Differential Scanning Calorimetry Experiments. Crystal Growth and Design, 2018, 18, 3107-3116.                        | 1.4 | 21        |
| 32 | Phase-pure BiFeO <sub>3</sub> produced by reaction flash-sintering of Bi <sub>2</sub> O <sub>3</sub><br>and Fe <sub>2</sub> O <sub>3</sub> . Journal of Materials Chemistry A, 2018, 6, 5356-5366.            | 5.2 | 83        |
| 33 | Effect of milling mechanism on the CO2 capture performance of limestone in the Calcium Looping process. Chemical Engineering Journal, 2018, 346, 549-556.                                                     | 6.6 | 35        |
| 34 | Calcium-Looping performance of mechanically modified Al2O3-CaO composites for energy storage and CO2 capture. Chemical Engineering Journal, 2018, 334, 2343-2355.                                             | 6.6 | 138       |
| 35 | Low-cost Ca-based composites synthesized by biotemplate method for thermochemical energy storage of concentrated solar power. Applied Energy, 2018, 210, 108-116.                                             | 5.1 | 97        |
| 36 | Role of calcium looping conditions on the performance of natural and synthetic Ca-based materials for energy storage. Journal of CO2 Utilization, 2018, 28, 374-384.                                          | 3.3 | 110       |

## Pedro E SÃinchez-Jiménez

| #  | Article                                                                                                                                                                                                                 | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Combined kinetic analysis of multistep processes of thermal decomposition of polydimethylsiloxane silicone. Polymer, 2018, 153, 558-564.                                                                                | 1.8 | 25        |
| 38 | Thermoanalytical Characterization Techniques for Multiferroic Materials. Handbook of Thermal Analysis and Calorimetry, 2018, 6, 643-683.                                                                                | 1.6 | 5         |
| 39 | Synthesis, characterization and combined kinetic analysis of thermal decomposition of hydrotalcite<br>(Mg6Al2(OH)16CO3·4H2O). Thermochimica Acta, 2018, 667, 177-184.                                                   | 1.2 | 30        |
| 40 | Large-Scale Storage of Concentrated Solar Power from Industrial Waste. ACS Sustainable Chemistry and Engineering, 2017, 5, 2265-2272.                                                                                   | 3.2 | 22        |
| 41 | CO2 capture performance of Ca-Mg acetates at realistic Calcium Looping conditions. Fuel, 2017, 196, 497-507.                                                                                                            | 3.4 | 35        |
| 42 | Effect of Thermal Pretreatment and Nanosilica Addition on Limestone Performance at<br>Calcium-Looping Conditions for Thermochemical Energy Storage of Concentrated Solar Power.<br>Energy & Fuels, 2017, 31, 4226-4236. | 2.5 | 66        |
| 43 | Large-scale high-temperature solar energy storage using natural minerals. Solar Energy Materials and<br>Solar Cells, 2017, 168, 14-21.                                                                                  | 3.0 | 119       |
| 44 | Flash sintering of highly insulating nanostructured phaseâ€pure BiFeO <sub>3</sub> . Journal of the<br>American Ceramic Society, 2017, 100, 3365-3369.                                                                  | 1.9 | 58        |
| 45 | Leadâ€Free Polycrystalline Ferroelectric Nanowires with Enhanced Curie Temperature. Advanced<br>Functional Materials, 2017, 27, 1701169.                                                                                | 7.8 | 19        |
| 46 | Multicycle activity of natural CaCO 3 minerals for thermochemical energy storage in Concentrated<br>Solar Power plants. Solar Energy, 2017, 153, 188-199.                                                               | 2.9 | 112       |
| 47 | Characterization of mechanosynthesized Bi 1â^'x Sm x FeO 3 samples unencumbered by secondary phases<br>or compositional inhomogeneity. Journal of Alloys and Compounds, 2017, 711, 541-551.                             | 2.8 | 20        |
| 48 | Calcium-Looping performance of steel and blast furnace slags for thermochemical energy storage in concentrated solar power plants. Journal of CO2 Utilization, 2017, 22, 143-154.                                       | 3.3 | 43        |
| 49 | Defect chemistry and electrical properties of BiFeO <sub>3</sub> . Journal of Materials Chemistry C, 2017, 5, 10077-10086.                                                                                              | 2.7 | 54        |
| 50 | A Promising approach to the kinetics of crystallization processes: The sample controlled thermal analysis. Journal of the American Ceramic Society, 2017, 100, 1125-1133.                                               | 1.9 | 7         |
| 51 | Microcalorimetry: A powerful tool for quantitative analysis of aging hardening response of Cu-Ni-Sn<br>alloys. Journal of Alloys and Compounds, 2017, 694, 710-714.                                                     | 2.8 | 9         |
| 52 | Structural and Chemical Characteristics of Sisal Fiber and Its Components: Effect of Washing and<br>Grinding. Journal of Natural Fibers, 2017, 14, 26-39.                                                               | 1.7 | 27        |
| 53 | Preparation of ytterbium substituted BiFeO3 multiferroics by mechanical activation. Journal of the European Ceramic Society, 2017, 37, 945-954.                                                                         | 2.8 | 18        |
| 54 | On the Multicycle Activity of Natural Limestone/Dolomite for Thermochemical Energy Storage of<br>Concentrated Solar Power. Energy Technology, 2016, 4, 1013-1019.                                                       | 1.8 | 95        |

| #  | Article                                                                                                                                                                                                             | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | The calorimetric analysis as a tool for studying the aging hardening mechanism of a<br>Cu-10wt%Ni-5.5wt%Sn alloy. Journal of Alloys and Compounds, 2016, 688, 288-294.                                              | 2.8 | 32        |
| 56 | Use of steel slag for CO2 capture under realistic calcium-looping conditions. RSC Advances, 2016, 6, 37656-37663.                                                                                                   | 1.7 | 28        |
| 57 | Magnesium hydride for energy storage applications: The kinetics of dehydrogenation under different working conditions. Journal of Alloys and Compounds, 2016, 681, 571-579.                                         | 2.8 | 24        |
| 58 | Template-Assisted Hydrothermal Growth of Aligned Zinc Oxide Nanowires for Piezoelectric Energy<br>Harvesting Applications. ACS Applied Materials & Interfaces, 2016, 8, 13678-13683.                                | 4.0 | 69        |
| 59 | On the relevant role of solids residence time on their CO2 capture performance in the Calcium Looping technology. Energy, 2016, 113, 160-171.                                                                       | 4.5 | 22        |
| 60 | Combined TGA-MS kinetic analysis of multistep processes. Thermal decomposition and ceramification of polysilazane and polysiloxane preceramic polymers. Physical Chemistry Chemical Physics, 2016, 18, 29348-29360. | 1.3 | 38        |
| 61 | Constant rate thermal analysis of a dehydrogenation reaction. RSC Advances, 2016, 6, 81454-81460.                                                                                                                   | 1.7 | 3         |
| 62 | Influence of Ball Milling on CaO Crystal Growth During Limestone and Dolomite Calcination: Effect<br>on CO <sub>2</sub> Capture at Calcium Looping Conditions. Crystal Growth and Design, 2016, 16,<br>7025-7036.   | 1.4 | 39        |
| 63 | Effect of dolomite decomposition under CO <sub>2</sub> on its multicycle CO <sub>2</sub> capture behaviour under calcium looping conditions. Physical Chemistry Chemical Physics, 2016, 18, 16325-16336.            | 1.3 | 22        |
| 64 | The Calcium-Looping technology for CO2 capture: On the important roles of energy integration and sorbent behavior. Applied Energy, 2016, 162, 787-807.                                                              | 5.1 | 286       |
| 65 | Reductive lithium insertion into B-cation deficient niobium perovskite oxides. Dalton Transactions, 2015, 44, 10636-10643.                                                                                          | 1.6 | 3         |
| 66 | Synthesis of a nanosilica supported CO2 sorbent in a fluidized bed reactor. Applied Surface Science, 2015, 328, 548-553.                                                                                            | 3.1 | 15        |
| 67 | Preparation of phase pure, dense fine grained ceramics by conventional and spark plasma sintering of<br>La-substituted BiFeO3 nanoparticles. Journal of the European Ceramic Society, 2015, 35, 2283-2293.          | 2.8 | 23        |
| 68 | Limestone Calcination Nearby Equilibrium: Kinetics, CaO Crystal Structure, Sintering and Reactivity.<br>Journal of Physical Chemistry C, 2015, 119, 1623-1641.                                                      | 1.5 | 130       |
| 69 | Applications of sample-controlled thermal analysis (SCTA) to kinetic analysis and synthesis of materials. Journal of Thermal Analysis and Calorimetry, 2015, 120, 45-51.                                            | 2.0 | 9         |
| 70 | Structural, Optical, and Electrical Characterization of Yttrium-Substituted BiFeO3 Ceramics Prepared by Mechanical Activation. Inorganic Chemistry, 2015, 54, 9876-9884.                                            | 1.9 | 18        |
| 71 | Thermal decomposition of dolomite under CO <sub>2</sub> : insights from TGA and in situ XRD analysis. Physical Chemistry Chemical Physics, 2015, 17, 30162-30176.                                                   | 1.3 | 97        |
| 72 | New Insights on the Kinetic Analysis of Isothermal Data: The Independence of the Activation Energy<br>from the Assumed Kinetic Model. Energy & Fuels, 2015, 29, 392-397.                                            | 2.5 | 10        |

Pedro E SÃinchez-Jiménez

| #  | Article                                                                                                                                                                                                                                                                                                                                                                         | IF                 | CITATIONS       |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|-----------------|
| 73 | Ca-looping for postcombustion CO2 capture: A comparative analysis on the performances of dolomite and limestone. Applied Energy, 2015, 138, 202-215.                                                                                                                                                                                                                            | 5.1                | 115             |
| 74 | Nanosilica supported CaO: A regenerable and mechanically hard CO2 sorbent at Ca-looping conditions. Applied Energy, 2014, 118, 92-99.                                                                                                                                                                                                                                           | 5.1                | 80              |
| 75 | Scission kinetic model for the prediction of polymer pyrolysis curves from chain structure. Polymer Testing, 2014, 37, 1-5.                                                                                                                                                                                                                                                     | 2.3                | 23              |
| 76 | High and stable <mml:math <br="" altimg="si9.gif" xmlns:mml="http://www.w3.org/1998/Math/MathML">overflow="scroll"&gt;<mml:mrow><mml:msub><mml:mrow><mml:mi<br>mathvariant="normal"&gt;CO</mml:mi<br></mml:mrow><mml:mrow><mml:mn>2</mml:mn></mml:mrow>capture capacity of natural limestone at Ca-looping conditions by heat pretreatment and</mml:msub></mml:mrow></mml:math> | ıb <b>s.4</b> /mml | :m <b>8%</b> w> |
| 77 | recarbonation synergy. Fuel, 2014, 123, 79-85.<br>Comparison of thermal behavior of natural and hot-washed sisal fibers based on their main<br>components: Cellulose, xylan and lignin. TG-FTIR analysis of volatile products. Thermochimica Acta,<br>2014, 581, 70-86.                                                                                                         | 1.2                | 88              |
| 78 | Comments on "Pyrolysis kinetics of biomass from product information―(Applied Energy 110 (2013) 1–8)<br>regarding the inability to obtain meaningful kinetic parameters from a single non-isothermal curve.<br>Applied Energy, 2014, 125, 132-135.                                                                                                                               | 5.1                | 15              |
| 79 | The effect of polymer matrices on the thermal hazard properties of RDX-based PBXs by using model-free and combined kinetic analysis. Journal of Hazardous Materials, 2014, 271, 185-195.                                                                                                                                                                                        | 6.5                | 34              |
| 80 | Characterization of thermally stable gamma alumina fibres biomimicking sisal. Microporous and Mesoporous Materials, 2014, 185, 167-178.                                                                                                                                                                                                                                         | 2.2                | 18              |
| 81 | Thermal Stability of Multiferroic BiFeO <sub>3</sub> : Kinetic Nature of the β–γ Transition and Peritectic<br>Decomposition. Journal of Physical Chemistry C, 2014, 118, 26387-26395.                                                                                                                                                                                           | 1.5                | 44              |
| 82 | Single phase, electrically insulating, multiferroic La-substituted BiFeO <sub>3</sub> prepared by mechanosynthesis. Journal of Materials Chemistry C, 2014, 2, 8398-8411.                                                                                                                                                                                                       | 2.7                | 45              |
| 83 | Effect of Heat Pretreatment/Recarbonation in the Ca-Looping Process at Realistic Calcination Conditions. Energy & amp; Fuels, 2014, 28, 4062-4067.                                                                                                                                                                                                                              | 2.5                | 33              |
| 84 | Role of precalcination and regeneration conditions on postcombustion CO2 capture in the Ca-looping technology. Applied Energy, 2014, 136, 347-356.                                                                                                                                                                                                                              | 5.1                | 51              |
| 85 | Role of crystal structure on                                                                                                                                                                                                                                                                                                                                                    |                    |                 |

| #   | Article                                                                                                                                                                                                                                                                                        | IF  | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91  | Clarifications regarding the use of model-fitting methods of kinetic analysis for determining the activation energy from a single non-isothermal curve. Chemistry Central Journal, 2013, 7, 25.                                                                                                | 2.6 | 18        |
| 92  | Kinetic studies in solid state reactions by sample-controlled methods and advanced analysis procedures. Journal of Thermal Analysis and Calorimetry, 2013, 113, 1447-1453.                                                                                                                     | 2.0 | 7         |
| 93  | Pyrolysis kinetics of ethylene–propylene (EPM) and ethylene–propylene–diene (EPDM). Polymer<br>Degradation and Stability, 2013, 98, 1571-1577.                                                                                                                                                 | 2.7 | 23        |
| 94  | Generalized master plots as a straightforward approach for determining the kinetic model: The case of cellulose pyrolysis. Thermochimica Acta, 2013, 552, 54-59.                                                                                                                               | 1.2 | 150       |
| 95  | Enhanced general analytical equation for the kinetics of the thermal degradation of poly(lactic acid) driven by random scission. Polymer Testing, 2013, 32, 937-945.                                                                                                                           | 2.3 | 47        |
| 96  | Constant rate thermal analysis for enhancing the long-term CO2 capture of CaO at Ca-looping conditions. Applied Energy, 2013, 108, 108-120.                                                                                                                                                    | 5.1 | 59        |
| 97  | Limitations of model-fitting methods for kinetic analysis: Polystyrene thermal degradation.<br>Resources, Conservation and Recycling, 2013, 74, 75-81.                                                                                                                                         | 5.3 | 42        |
| 98  | Direct mechanosynthesis of pure BiFeO3 perovskite nanoparticles: reaction mechanism. Journal of<br>Materials Chemistry C, 2013, 1, 3551.                                                                                                                                                       | 2.7 | 49        |
| 99  | Role of Looping-Calcination Conditions on Self-Reactivation of Thermally Pretreated CO <sub>2</sub><br>Sorbents Based on CaO. Energy & Fuels, 2013, 27, 3373-3384.                                                                                                                             | 2.5 | 30        |
| 100 | CO2 multicyclic capture of pretreated/doped CaO in the Ca-looping process. Theory and experiments.<br>Physical Chemistry Chemical Physics, 2013, 15, 11775.                                                                                                                                    | 1.3 | 43        |
| 101 | Comments on "Thermal decomposition of pyridoxine: an evolved gas analysisâ€ion attachment mass<br>spectrometry studyâ€: About the application of modelâ€fitting methods of kinetic analysis to single<br>nonâ€isothermal curves. Rapid Communications in Mass Spectrometry, 2013, 27, 500-502. | 0.7 | 2         |
| 102 | Electrical Properties of Stoichiometric <scp><scp>BiFeO</scp></scp> <sub>3</sub> Prepared by<br>Mechanosynthesis with Either Conventional or Spark Plasma Sintering. Journal of the American<br>Ceramic Society, 2013, 96, 1220-1227.                                                          | 1.9 | 53        |
| 103 | Nanoclay Nucleation Effect in the Thermal Stabilization of a Polymer Nanocomposite: A Kinetic<br>Mechanism Change. Journal of Physical Chemistry C, 2012, 116, 11797-11807.                                                                                                                    | 1.5 | 88        |
| 104 | Kinetic Analysis of Complex Solid-State Reactions. A New Deconvolution Procedure. Journal of Physical Chemistry B, 2011, 115, 1780-1791.                                                                                                                                                       | 1.2 | 318       |
| 105 | An improved model for the kinetic description of the thermal degradation of cellulose. Cellulose, 2011, 18, 1487-1498.                                                                                                                                                                         | 2.4 | 67        |
| 106 | Constant rate thermal analysis for thermal stability studies of polymers. Polymer Degradation and Stability, 2011, 96, 974-981.                                                                                                                                                                | 2.7 | 40        |
| 107 | A new model for the kinetic analysis of thermal degradation of polymers driven by random scission.<br>Polymer Degradation and Stability, 2010, 95, 733-739.                                                                                                                                    | 2.7 | 143       |
| 108 | Giant piezoresistivity of polymer-derived ceramics at high temperatures. Journal of the European<br>Ceramic Society, 2010, 30, 2203-2207.                                                                                                                                                      | 2.8 | 70        |

## Pedro E SÃinchez-Jiménez

| #   | Article                                                                                                                                                                                                                                                                    | IF  | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 109 | Kinetic model for thermal dehydrochlorination of poly(vinyl chloride). Polymer, 2010, 51, 3998-4007.                                                                                                                                                                       | 1.8 | 159       |
| 110 | Mechanochemical preparation of BaTiO3–Ni nanocomposites with high dielectric constant. Composite<br>Structures, 2010, 92, 2236-2240.                                                                                                                                       | 3.1 | 26        |
| 111 | Lithium Insertion in Polymerâ€Derived Silicon Oxycarbide Ceramics. Journal of the American Ceramic<br>Society, 2010, 93, 1127-1135.                                                                                                                                        | 1.9 | 70        |
| 112 | Study of the Dehydroxylation–Rehydroxylation of Pyrophyllite. Journal of the American Ceramic<br>Society, 2010, 93, 2392-2398.                                                                                                                                             | 1.9 | 16        |
| 113 | Transient Viscous Flow During the Evolution of a Ceramic (Silicon Carbonitride) from a Polymer<br>(Polysilazane). Journal of the American Ceramic Society, 2010, 93, 2567-2570.                                                                                            | 1.9 | 9         |
| 114 | Quantitative Characterization of Multicomponent Polymers by Sample-Controlled Thermal Analysis.<br>Analytical Chemistry, 2010, 82, 8875-8880.                                                                                                                              | 3.2 | 27        |
| 115 | Generalized Kinetic Master Plots for the Thermal Degradation of Polymers Following a Random<br>Scission Mechanism. Journal of Physical Chemistry A, 2010, 114, 7868-7876.                                                                                                  | 1.1 | 85        |
| 116 | Combined kinetic analysis of thermal degradation of polymeric materials under any thermal pathway.<br>Polymer Degradation and Stability, 2009, 94, 2079-2085.                                                                                                              | 2.7 | 92        |
| 117 | Thermal characterization of montmorillonite clays saturated with various cations. Journal of<br>Thermal Analysis and Calorimetry, 2008, 92, 191-197.                                                                                                                       | 2.0 | 21        |
| 118 | Critical study of the isoconversional methods of kinetic analysis. Journal of Thermal Analysis and Calorimetry, 2008, 92, 199-203.                                                                                                                                         | 2.0 | 156       |
| 119 | Kissinger kinetic analysis of data obtained under different heating schedules. Journal of Thermal<br>Analysis and Calorimetry, 2008, 94, 427-432.                                                                                                                          | 2.0 | 96        |
| 120 | Development of a universal constant rate thermal analysis system for being used with any thermoanalytical instrument. Journal of Thermal Analysis and Calorimetry, 2007, 87, 297-300.                                                                                      | 2.0 | 30        |
| 121 | Combined Kinetic Analysis of Solid-State Reactions:Â A Powerful Tool for the Simultaneous<br>Determination of Kinetic Parameters and the Kinetic Model without Previous Assumptions on the<br>Reaction Mechanism. Journal of Physical Chemistry A, 2006, 110, 12456-12462. | 1.1 | 253       |
| 122 | Evaluation of the integral methods for the kinetic study of thermally stimulated processes in polymer science. Polymer, 2005, 46, 2950-2954.                                                                                                                               | 1.8 | 51        |
| 123 | Kinetic analysis of solid-state reactions: Precision of the activation energy calculated by integral methods. International Journal of Chemical Kinetics, 2005, 37, 658-666.                                                                                               | 1.0 | 61        |
| 124 | Dependence of the preexponential factor on temperature. Journal of Thermal Analysis and Calorimetry, 2005, 82, 671-675.                                                                                                                                                    | 2.0 | 133       |